Target Configurations for Laser-Driven Fusion Reaction

Wei YU

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences The rate of fusion reaction per unit volume:

$$P = n_i^2(\overline{\sigma v})$$

 n_i : ion density, $(\overline{\sigma v})$: the reactivity, it reaches maximum as ion temperature $T_i = 1.25$ MeV for DD reaction and $T_i = 64$ KeV for DT reaction.

The key issue: a proper target configuration that can lead to high concentration of ions at the appropriate temperature.

1, Laser-driven ion focusing in a shell target

laser strength: a0=5, duration: 20T, spot size: 2 λ ,

density: 4 nc, inner radius: 4 λ outer radius: 6 λ 40 degree opening.

EM energy density t=50T

Incident laser fills the cavity

Ion temperature at t=100T

The shell target is heated by laser from inside

Ion density (red), momentum (blue), and space charge field (green) at z=10 and t=100T

Strong inward expansion of laser-heated plasma

Ion density at t=150T and 300T

Inward expanding ions slow down at the center, leading to a sharp ion peak. The shell itself almost disappears

Ion temperature at t=300T

As inward expanding ions slows down, the energy deposition makes the ion peak rapidly heated.

Time evolution of ion density and temperature at shell center

High concentration of high-temperature ions

2, Impact of laser-accelerated micron-size projectile with plasma

laser strength: a0=40 $(I=2.2\times10^{21} \text{W/cm}^2)$ spot radius: 5λ pulse width: 10λ

size of targets: A(3 λ X 1 λ) and B(3 λ X 4 λ). target density: 100nc interval between two targets: 2 λ .

Ion density at t=32T and 52T

Target A is effectively accelerated [PRE 72, 046401(2005)] Blocked by A, target B is almost not influenced.

Target A: the longitudinal ion velocity at t=52T.

Most ions are accelerated to >0.1c (>5MeV), although some ions leave behind and some move back.

Impact: ion density at t=58T, 70T, 79T and 83T

Ions in target A enter target B and stop inside Target B does not move significantly.

Ion energy distribution in B at 58*T* and 83*T*, i.e. before and after impact.

With the kinetic energy of A deposited, target B is rapidly heated after impact.

Expansion: ion density at t=113T and 135T

The resulting high-density, high-temperature plasma bunch expands outward.

Time evolution of ion density and temperature

Plasma bunch of 1-4.68MeV temperature and 10-130nc density.

Thanks