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Antimatter has many potentially revolutionary applications. But
current technique of creating positrons with accelerators and 
trapping them with electrostatic traps is very inefficient and 
can only produce low density e+ (Surko and Greaves 2004):

Maximum Beam Intensity < 1010 e+/s

Maximum Density < 1014 e+/cm3

Ultra-intense lasers opens up exciting new approach to produce 
high intensity, high density e+e- pairs with high efficiency

It is very desirable to reach pair density > 1018/cm3

for applications
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Sample Laser Numbers

1 PW = 1 kJ / 1 ps

1 PW / (30 μm)2 = 1020 W/cm2

1020 W/cm2/c ~ 3.1016 erg/cm3 ~ 2.1022 e+e- /cm3

Solid Au ion density ~ 6.1022 /cm3

n+/ne ~ 4.10-3

Bequipartition ~ 9.108 GIn reality, the max. achievable pair density is

probably around 1019 - 10 20 cm -3



PAIR PRODUCTION BY SUPERTHERMALS ON HIGH-Z
TARGET:

dN+/dt   =  (dN+/dt)eion  + (dN+/dt)γion + (dN+/dt)γγ

1 >  2 3
for thin (<< 20 μm) laser targets.    Hence

dN+/dt   =  (N+ + N-) < Nion (f(γ) v σeion )>
f(γ) is normalized superthermal distribution function and

σeion ~ 1.4 x 10?0  cm2 Z2 (ln γ)3 for γ >> 1
is trident pair production cross section (e+ion e+ion+γγ):
Solving above equation:
N+ = Z Nion {exp(Γt) ?1 }/2 ~ ZNionΓt/2 for Γt << 1

N+/Ne ~ Γt/2 ~ 2 x 10?  for t ~ 10 ps, I = 1020 Wcm-2

For Au: N+ ~ 1022 cm-3
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Pair Creation Rate Rises Rapidly with Laser Intensity to ~1020Wcm-2, 
but levels off after 1021Wcm-2.

1019W/cm2

1020W/cm2

Liang et al 1998

Nakashima & Takabe 2002



Bethe-Heitler pair-production has larger cross-section than 
Trident, but it depends on photon density, Z and optical depth 

of the high-Z target

Bethe-Heitler

Trident

Nakashima & Takabe 2002



Nakashima & Takabe 2002
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2.1020W.cm-2

0.42 p s

e+e-

125μm Au

LLNL PW laser experiments first demonstrated e+e- production 
with Au foils.  But the flux was low due to off-axis measurements

Cowan et al 2002



Trident process dominates for thin targets. 
But Bethe-Heitler dominates for thick targets.

How high can the e+ yield go if we use very thick targets?

Nakashima & Takabe 2002

I=1020Wcm-2

?



QuickTime?and a
Graphics decompressor

are needed to see this picture.

thickness (mm)

Positron yield per incident hot electron increases with Au thickness:  
transition from quadratic to linear occurs around 2-3 mm.

bremss-γ opt.thick

bremss-γ
opt. thin



QuickTime?and a
Graphics decompressor

are needed to see this picture.
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But emergent positrons are attenuated by cold absorption inside target :  
low energy e+ are absorbed by thick target due to ionization losses 

0 mm
0.25mm

0.5mm
0.75mm

1mm

incident hot electron spectrum

emergent e+ spectra



QuickTime?and a
Graphics decompressor

are needed to see this picture.
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Allowing for cold attenuation , emergent e+ yield per incident hot
electron peaks at ~ 2.6 % where Au thickness ~ 5 - 6 mm



Assuming that the conversion of laser energy to hot electrons is
~ 30 % and the hot electron temperature is ~ 5 -10 MeV, the 

above analysis suggests that the optimal positron yield is 

~ few x 1012 e+ per kJ of laser energy
when the Au target ~ 5 - 6 mm

The in-situ e+ density should reach > 1017/cm3

****************************************
For a 1 mm target, the e+ yield is ~ 1012 per kJ of laser energy.

These results are roughly consistent with the latest Titan 
experiments ( Chen et al PRL 2008 submitted and talk at the 

upcoming DPP November 2008 meeting in Dallas)



Above direct irradiation of solid high-Z solid target requires PW-class 
lasers (“1-step” process).  Alternative approach demonstrated by Gahn
et al (2000, 2002) uses smaller lasers to first accelerate an MeV e-beam
in a gas target (LWFA or bubble accelerator).   The MeV electrons
then create pairs by hitting a second high-Z converter.  This  “2-step”
process produces lower e+ yield per J of laser energy, and lower
e+ density, but it has higher rep rate so it can produce a semi-
continuous e+ beam.



What are the most exciting applications of a dense e+ source?

High density e+ source makes it feasible to create a BEC of Ps
at cryogenic temperature

(from Liang and Dermer 1988).



A Ps column density of
1021 cm-2 could in
principle achieve
a gain-length of 10
for gamma-ray
amplification via
stimulated annihilation
radiation (GRASAR). 
(from Liang and Dermer
1988)



relativistic e+e- plasmas are ubiquitous in the universe

Thermal MeV pairs
Nonthermal TeV pairs

Laser-produced pair plasmas can be used to study lab astrophysics



The Black Hole gamma-ray-bump can be interpreted as 
emissions from a pair-dominated MeV plasma with n+ ~ 1017cm-3

L

T/mc2

Pair-dominated
kT limit

Can laser-produced pair plasmas probe the pair-dominated temperature limit?  



Another concept:two-sided irradiation may create more pairs, 
due to hotter electrons and longer confinement time

10211021

Ponderomotive forces can 

lead to a pair cascade by 

reaccelerating the primary

pairs in the foil



Future Work: Needs to study the detailed interactions of laser induced    
EM fields with hot electrons and pairs inside target

20 μm
Au foil

1021 Wcm2

150 fs
laser

2 μm
foil

Evolution of hot
electron distribution

at max intensity



Evolution of hot
Electron distribution

at max intensity

20 μm foil 2 μm foil



20 μm foil 2 μm foil

blue=2-sided irradiation,        red=1-sided irradiation

2-sided irradiation of a thin foil seems to produce much 
hotter electrons for pair production



Summary

1. Both experiments and numerical simulations
point towards copious production of e+e- pairs  
using lasers with I > 1020 Wcm-2.

2. We estimate max. e+ yield > 1012 per kJ of laser energy
(conversion efficiency ~ few %).

3. The in-situ e+ density can exceed 1017 cm-3.
4. Such a dense and intense e+ source makes it feasible to 

think about creating a BEC of Ps at cryogenic 
temperatures.

5. Such a Ps BEC would be a strong candidate for a 
GRASAR


