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summary - )

PHELIX is in operation since May 200&145? B

PHELIX has been commissioned for use with short pulses (120 J, 700 fs)
and nanosecond pulses (300 J - 1kJ)

« The short-pulse beamline uses a 90-degree off-axis parabolic mirror to
achieve high on-target intensity, confirmed by the energy spectrum of
accelerated protons

« The nanosecond beamline has been used to support the GSI plasma
physics program with first encouraging results on ion stopping in laser
generated plasma

A call for proposal for experiments in 2009 is running until 3-11-2008, please
see me for details
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The main amplifier delivers the targeted gain of 1 (Db“?r 1;}
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We use a single-pass two-grating compressor. | |, 1@ R
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« The advantage is high throughput but at the expense of pulse lengthening

 An elliptical beam is used to better fill the MLD gratings: Horiba-Jobin-lvon
gratings 47 x 35 cm? at 72° incidence require an 12 x 23 cm? elliptical beam

Entrance
window

T > 90%
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We use a birefringent filter* in the front-end ? ) i g
to pre-compensate gain narrowing. W

« The PHELIX two-regenerative-amplifier front-end is particularly suited to the
method,

« Without loss in output energy, a birefringent plate and a polarizer are
introduced between the amplifiers to spectrally shape the spectrum and
create a hole at the gain peak of the glass amplifier,

« Spectra>5nm wide are routinely
obtained at the end of the main
amplifier, capable of supporting <
350 fs (Fourier transform limited)
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* Barty et al.: Optics Letters, Vol. 21 Issue 3, pp.219-221 (1996) \;\\J/é




-
Characterization of the compressed short pulseﬁ.z.-!i.*'
is under way. U
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« On asub-aperture, the short pulse compresses well (see below)
 Over the full aperture, an increase to 700 fs is visible

— This is a strong effect due to the geometry (single pass) and the ratio
between beam size and wavelength spread.

« The data needs to be confirmed at full power
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A 90-degree low-cost off-axis metallic parabola
good focusing capability.

« The 90-degree massive metallic mirror is machined to ~1 micron accuracy
(PV),

« The surface roughness and machining precision have to the balanced to get
the best trade-off between scattering losses and wavefront error.

Mirror in its Holder

Back View

Estimation of scattered energy based
on simulated surface roughness

scattered energy (%)
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Experimental evidence indicates an on-target
intensity > 1019 W.cm™

« A calculation based on the far-field intensity distribution yields 3.5 101 W.cm?2

« According the accelerated proton spectra obtained by the Technical
University Darmstadt (TUD), the intensity is rather ~102° W.cm?
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Currently proton acceleration is being evaluate({u{? . 4
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 Laser accelerated ions are of interest to GSl as a complementary tool to the
existing accelerator
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* First experiments are i
aimed at helping with the |
commissioning of the |
system S ok N
= i
« So far > 30 MeV protons —_————— i
have been accelerated i e L |
with PHELIX, indicating - Bl
that hlg h |ntenS|ty i :_ ) : :Il:,iEl_::I?:,,IPF. inoeptad _::
Conditions (~ 1020 WlCm2: -‘ 1 1 1 L1 11 I‘: _SII-Ia”Tila?a- I-I:J-ljf-lsll |—I:l: ]IJ — UIU[II'_JJI‘. ‘I-.: .-ILI‘.CJEI-: 111 I-f‘
are obtained at the focus <3 .3 , -3 s
I (Wicm*)
More on-target intensity estimates are planned in the near term
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Combined ion-laser experiments were conduct
this year to study the stopping power of plasma

* In the context of inertial fusion with
heavy ions, we study the energy loss
of ions in laser-generated plasma, 160

Time evolution of the ion-energy loss
100 corresponds to the cold target
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» We used PHELIX pulses with 7-15 ns
and 50 - 315 J, to compare to T
measurements done at lower energy |
using nhelix
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« We measure the ion-energy loss via o |

time-of-flight measurements 0 5 0 i 0 e gD
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* Inaplasma, the theory predicts that
ion-energy loss is dominated by free
electrons but our experiments do not

: ) \y
only illustrate this. W
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Our program requires PHELIX for improving the1” '?J ~
experimental data L‘”’” ’

A higher energy allows for a full ionization of thicker foils with higher Z to
iImprove the measurement accuracy
— We have experiment plan to extend the on-target deposited energy to
500J- 1 kJ

A major limitation to our setup is the non-uniformity of the plasma:
— In the best case, the plasmais one dimensional,
— This is further reduced by the on-target beam non-uniformities

« We are currently looking into two solutions to this problem
— Indirect heating using 2w light creates uniform conditions

— Under critical foams have shown good smoothing capabilities and
volume absorption to create uniform conditions
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« We are using PHELIX to pump X-ray laser with Ni-like Samarium (6.8 nm)

— We have developed an innovative two pulse scheme* to create transient
collisionaly excited (TCE) plasma X-ray laser

We applied PHELIX to the investigation of X-ray
the sub-10 nm regime.

3800

g

3000

intensity [pixel value]

——Sm-XRL (2nd order)
— C-edge (3rd order)
| |

220%

| | | | | I
3 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6

wavelength [nm]
]Wi L“Eﬁ{;:'; * Zimmer et al.: Optics Express, 16, pp.10398-10404 (2008)
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