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The experiments require a 100-300 fs laser

with 100-200 J energy
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The Texas Petawatt Facility will have two
lasers and multiple target areas
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Optical Parametric Amplification and mixed glass
amplification produces a new type of Petawatt laser
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The Texas Petawatt laser uses three
OPCPA and two Nd:glass amplifier stages
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Stable oscillator and stretcher are important for
reliable OPCPA operation

oscillator 1SO FR Image inv. Roof top
,/\ FP

» Transmitted bandwidth: 1035 -1077 nm _ o
« 2-pass stretcher (i.e. 8 grating reflections) Small changes in pointing,

- 12 degrees separation angle collimation, aberration,
« Chirp: 116 ps/nm wavelength, timing... affect the

. : .. output of the OPA stages
« Image inversion corrects all aberration in 2" pass ! P J
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Optical Parametric Chirped Pulse Amplification
provides 1010 gain and broadens the spectrum

150 pJ, 16 nm, 1.8 ns
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Two pump lasers were used to allow for separate timing
between OPCPA stages Il and Ill
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We have characterized all pump beam parameters
which are crucial for stable OPCPA operation.

sspatial-temporal profile is
important for uniform
amplification of beam at all
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We have achieved good stability from the OPCPA

OPCPA output stability

—— OPCPA 3 ; .
(2.5 Hz) Nearfield stage I Nearfield stage Il

StDev = 2.2%

—— OPCPA 2
(10 Hz)
StDev = 8.2%

—— Average
OPCPA3

—— Average
OPCPA2

Compression of OPCPA output
in large compressor
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Spectral control in the OPCPA stages allows for
broadening of the final bandwidth

Spectral saturation in stage Il and shiftidgalue

_ Spectral preshaping or the pulse due
temporal overlap with the pump pulse.

temporal control of the 4 J pump pulse.
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An 8-pass, 64 mm, silicate Nd:glass rod amplifier
brings the energy up to 20 J

Radial Group *FR*Rod
Delay lens

_ eup to 27 J
‘ R R — | achieved,
*15-18 J goal for
compression and
I low B-integral




The final amplifier use two Nova amplifiers
with phosphate Nd:glass disks

ISO

Disk Amp

sup to 248 J achieved, with 80% charge voltage
*Energy limited by gratings, not by gain.

e
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Mixed Nd:glass and relatively low net gain help

amplify with high bandwidth fidelity

RGD lens FR Rod SO ' Isolation from up to 1%
e —— e —— f_.'H'B'._ S back scattered energy
Gain | Energy | Fluence
— [J] [J/lcm2]
Target 001 | 2 0.006
Disk Amp Compressot| filter | 2 0.006
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I
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Radial group delay of pulse front caused by
large lenses must and can be corrected

Problem: : :
Solution requires:
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Phase front: v, c/n —p Phase front is flat for proper imaged system
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We have a negative lens/
aspheric mirror to correct this
problem and built an special
autocorrelator to measure Radial

Pulse front: v
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The compressor is inside a 6x14 ft Aluminum
vacuum chamber

Aluminum was chosen
for radiation safety due
to the proximity to target.
Chamber has been
evacuated below 10-6
Torr fully equipped.
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The Compressor has 85% efficiency with MLD
(Multi Layer Dielectric) Gratings from LLNL

1 . Grating distance =128 cm;1740 lines/mm Footprints of beam of both passes overlap partially

c
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We achieved nearly 200 J compressed energy

Energy at 17.5 kV main amp voltage (out of 22kV)

186 J compressed nearfield (at 167 fs)
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Energy is with +/- 10% of target energy,

Gratings have been conditioned with fluctuation are due to spectral shift from
> 100 shots between 50-200 J. timing of first pump laser.
Peak beam fluence <0.8 J The energy was measured of fused silica

reflections near O degree.
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We have achieved 1.1 PW laser pulses

Second order autocorrelation and
(assumed) Gaussian fit
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We have made a preliminary contrast measurement on the
GHOST OPCPA-Glass hybrid laser

Single shot third order autocorrelator

M5
delay stage filter
cCD stack dichroic mirror 19'4
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«data taken on OPCPA - mixed glass laser
(GHOST: 50mJ OPA, 3 J Glass) at UT by J.
Schmidt et al : : . :
*Contrast better than 107 at 20ps 107 ' ! i
*Parasitic Fluorescence level is typically g : : o
lower on the TPW despite higher gain delay time in ps
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The beamline and target chamber for the long
focusing geometry (F/40) have been installed
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sIntensity is still 101° W/cm?
sLong interaction in gas (several cm)
*Focusing optic is outside the target chamber
*Pointing might be an issue, but <10 prad
required for good pulse compression

October 2008



We will build a 2-100ns long pulse laser to
compliment the Texas PW laser

Switch yard
chamber

- Radiation  — - / Target

shield wall £/, J | chamber

il evvw




Summary

 We have achieved 1.1 PW (186 J, 167 fs)
laser pulses.

* In 9 cm of material we achieved 10 orders
of magnitude gain, saturated the pulse to
broaden and control the spectrum. We
extracted up to 250J and >14 nm
bandwidth out of mixed glass amplifiers
seeded by broadband pulses. This is
sufficient for 1.5 PW pulses after
compression.

* We efficiently compressed pulses with
MLD gratings compressor.

* A beamline with F#/40 focusing geometry
has been setup for experiments (Nov 08)

» The university of Texas lit up its tower
orange for the PW dedication (August/08)
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