

Consiglio Nazionale delle Ricerche

INO-CNR Istituto Nazionale di Ottica

Istituto Nazionale di Fisica Nucleare First experiments in a new 250TW laser laboratory devoted to laser-plasma acceleration and Thomson scattering studies

Presented by Luca Labate* on behalf of the PLASMONX commissioning team

Istituto Nazionale di Ottica Consiglio Nazionale delle Ricerche Pisa, Italy

Also at Laboratori Nazionali di Frascati Istituto Nazionale di Fisica Nucleare Frascati, Italy

Co-authors and institutions

L. Labate^{1,2,3}, D. Batani⁴, C. Benedetti^{5,*}, R. Benocci⁴, C. A. Cecchetti^{1,2,3}, G. Di Pirro³, N. Drenska⁶, R. Faccini⁶, M. Ferrario³, D. Filippetto³, A. Gamucci^{1,2,3}, G. Gatti³, A. Ghigo³, D. Giulietti^{7,2,3,†}, T. Levato³, S. Martellotti⁶, E. Pace³, N. Pathak^{1,2}, L. Serafini⁸, G. Turchetti⁵, C. Vaccarezza³, P. Valente⁶ L. A. Gizzi^{1,2,3,††}

¹Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
²Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
³Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy
⁴Dipartimento di Fisica, Università di Milano "Bicocca", Italy
⁵Dipartimento di Fisica, Università di Bologna, Italy
⁶Dipartimento di Fisica, Università di Roma "La Sapienza", Italy
⁷Dipartimento di Fisica Nucleare, Sezione di Milano, Italy
⁸Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy
*Now at LBNL, USA
[†] PLASMONX national representative
^{††} FLAME commissioning manager

ISTITUTO NAZIONALE DI

The PLASMONX project

PLAsma acceleration and **MONochromatic X-ray production**

PLASMONX

Conceptual Design Report

Combining the high brightness LINAC accelerator of the SPARC project with an ultra-short, high energy, >250TW laser system (FLAME)

PLASMA ACCELERATION AND MONOCHROMATIC X-RAY PRODUCTION

Scheduled activity

- LWFA with both externally injected and self-injected ebunches
- Linear and Nonlinear Thomson scattering X/γ -ray sources: backscattering of the laser pulse on both LINAC e-beams and LWFA e-beams
- Intense lasermatter interactions, proton acceleration

INO-CNR ISTITUTO NAZIONALE DI OTTICA

PLASMONX Units

I N F N

INO-CNR Istituto Nazionale di Ottica

Schematic view of the "LIFE" (laser+linac) labs

INFN

INO-CNR OTTICA

The SPARC LINAC at LNF

Panamatan	mlus
Farameter	varue
Bunch charge(nC)	$1 \div 2$
Energy (MeV)	$28 \div 150$
Length (ps)	$15 \div 20$
$\epsilon_{nx,y} \text{ (mm-mrad)}$	$1 \div 5$
Energy spread(%)	$0.05^{1} \div 0.2$
Spot size at interaction point rms (mm)	$5 \div 10$

ISTITUTO

OTTICA

The FLAME (*Frascati Laser for Acceleration and Multidisciplinary Experiments*) laboratory includes the FLAME laser system, a radioprotected target area for laser-target experiments and transport of laser to the SPARC bunker

The FLAME lab – history 1/2

11

23rd June 2008 -

Building completed

The FLAME lab – history 1/1

10th June 2009 – "Cold" laser installation

INO-CNR ISTITUTO NAZIONALE DI OTTICA

1 7hr

The FLAME lab – recent past

October 2009 – Laser wiring and connections completed Oscillator start-up;

December 2009 – 1st vacuum transport line completed;

July 2010 -Laser at target point;

INO-CNR ISTITUTO NAZIONALE DI OTTICA

The FLAME laser: performances to date

Repetition Rate Energy (after compression) Wavelength Pulse duration Peak power ASE contrast ratio RMS pulse energy stability Pointing stability (including path)

10 Hz up to 6 J (typ. exp. 5.6J) 800 nm down to 21 fs (typ.23 fs) up to 300 TW better than 2x10⁹

0.8%

 $< 2\mu rad$

The SITE (self-injection test experiment) is the first "laser only" scheduled experiment, mainly conceived to assess the laser performances

$L_{gas jet} [\rm mm]$	$n_e \; \mathrm{[e/cm^3]}$	τ [fs]	$I_0 \; \mathrm{[W/cm^2]}$	$w_0 \; [\mu { m m}]$
4	$3\cdot 10^{18}$	30	$5.2\cdot10^{19}$	16

PIC simulations performed using the code AlaDyn by C. Benedetti See: L.A. Gizzi et al., EPJ-ST, 175, 3-10 (2009)

INFN

INO-CNR ISTITUTO NAZIONALE DI OTTICA

The "SITE" experiment: PIC simulation

 $ct = 4000 \ \mu \text{m}$

 $W_{peak} \simeq 900$ (as predicted !) $\Delta W/W = 3.3$ %

Considering the particles with |W - 900| < 90 MeV

$$\begin{split} \sigma_x &\simeq 0.47 \; \mu \text{m} \\ \epsilon_{xn} &\simeq 2.3 \; \text{mm mrad} \\ \sigma_{x'} &= \epsilon_{xn} / (\gamma_{peak} \sigma_x) \simeq 2.8 \; \text{mrad} \end{split}$$

 $\sigma_y \simeq 0.53 \,\mu \text{m}$ $\epsilon_{yn} \simeq 2.8 \,\text{mm mrad}$ $\sigma_{y'} = \epsilon_{yn} / (\gamma_{peak} \sigma_y) \simeq 3.1 \,\text{mrad}$

Q = 0.62 nC $\sigma_z \simeq 1.8 \,\mu\text{m}$ $I_{aver} \simeq 45 \text{ kA}$

PIC simulations performed using the code AlaDyn

INO-CNR The "SITE" experiment: setup layout ISTITUTO NAZIONALE DI OTTICA **THOMSON 90°** Side Nal+PM Scattering/image view Spectrometer (LANEX out) Spectrometer Scintillator screen (LANEX) Gas jet Top View Main Laser Beam Nozzle MeV electron bunch Fast Valve Nal+PM **PROBE BEAM** (400 nm, <25fs, <50 mJ) MAIN BEAM with F/10 off-axis parabola Nozzle slit **Delay line** >Wavelength: 800 nm Pulse duration and energy: <25 fs</p> **Off-axis** Focal Spot diameter (FWHM): 13.5 parabolic mirror μm Depth of focus: < 250 µm</p> >Max Intensity(per Joule of energy):

5x10¹⁹ W/cm²

INFN

Results from a 2TW system at CNR - Pisa

A complementary experiment has been carried out at the Intense Laser Irradiation Laboratory of the INO-CNR in Pisa, demonstrating e- LWFA using a smaller scale (2TW) laser system

TS and interferometry show self-guiding Electron bunch from He gas-jet LASER 5-10 MeV electrons 200 µm 10° LANEX

Work in progress now on possible applications (e.g., radiobiological studies, IORT)

The FLAME "laser-only" Target Area

IN

The FLAME Target Area: shelding

The FLAME Target Area: vertical/horizontal shielding

Main beam transport and OAP in place

Last turning mirror and OAP vacuum chamber

INO-CNR ISTITUTO NAZIONALE DI OTTICA

Laser pointing stability at TCC

8

6

4

2

0

Count

Pointing stability at TCC

	Centroid Y	Centroid X
Minimum	160,89799	172,12
Maximum	166,22099	179,614
Points	39	39
Mean	162,9351	175,0372
Median	162,995	175,244
RMS	162,93927	175,04455
Std Deviation	1,18026	1,6241748
Variance	1,3930138	2,6379437
Std Error	0,18899286	0,26007611

Latest: gas-jet target in place

Wide-field top view image of the plasma – (Thomson scattering imaging)

INFN

August 2010: first plasma with f/10 OAP

Agenda for the next weeks

- Full power FLAME test: transport, compression, OAP focusing (no target)
- Laser performance test at output: far field, contrast, width, wavefront distortion measurements ... prepare for adaptive optics
- Completion and test of HW and SW control and diagnostics
- Completion of hardware and registration for radioprotection, safety and control of operations
- Laser on (gas-jet) target at >50 TW level

INFN

INO-CNR Istituto Nazionale di Ottica

Planned activity for the PLASMONX project

ATTIVITÀ COMMISSIONING FLAME E PLASMONX 2010-2011	LUG	AGO	SET	отт	NOV	DIC	1° TRI	2° TRI	3° TRI (11	4° TRI (11
Acceleration with self-injection (SITE) - Laser Beam and Plasma Diagnstics										
Acceleration with self-injection (SITE) - Bunch production and characterisation										
with 1.2 mm gas-jet										
Acceleration with self-injection (SITE) - Bunch production and characterisation										
with 4.0 mm gas-jet,										
Acceleration with self-injection (SITE) - Bunch stability and control vs laser										
stability										
Commissioning FLAME: Assessment and validation of laser performance at										
interaction focus point										
Thomson Scattering: Installation of additional e-beam line and delivery of										
laser beamline										
FAST: Installation of laser-linac sync										
Thomson Scattering: integration of target chambre components and X-ray										
source optimisation										
Thomson Scattering: X-ray beam to users (BEATS)										
FLAME target area Maintenance + set up and preliminary tests for solid target										
experiments										
Ion acceleration (LILIA) at FLAME target area										

- A 250TW laser laser laboratory for LPA is now fully operational at LNF-INFN in the framework of the INFN project PLASMONX
- The lab is equipped with an underground, radiation shielded target area for "laser-only" experiments awaiting authorizations
- A first "test" experiment has been conceived and is now under commissioning, mainly devoted to assess the laser system figures and performances
- PIC simulations shows that e- bunches should be obtained in such a test experiment with energy up to 900 MeV
- Rapidly approaching self-injection LPA measurements

Co-authors and institutions

L. Labate^{1,2,3}, D. Batani⁴, C. Benedetti^{5,*}, R. Benocci⁴, C. A. Cecchetti^{1,2,3}, G. Di Pirro³, N. Drenska⁶, R. Faccini⁶, M. Ferrario³, D. Filippetto³, A. Gamucci^{1,2,3}, G. Gatti³, A. Ghigo³, D. Giulietti^{7,2,3,†}, T. Levato³, S. Martellotti⁶, E. Pace³, N. Pathak^{1,2}, L. Serafini⁸, G. Turchetti⁵, C. Vaccarezza³, P. Valente⁶ L. A. Gizzi^{1,2,3,††}

¹Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
²Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
³Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy
⁴Dipartimento di Fisica, Università di Milano "Bicocca", Italy
⁵Dipartimento di Fisica, Università di Bologna, Italy
⁶Dipartimento di Fisica, Università di Roma "La Sapienza", Italy
⁷Dipartimento di Fisica Nucleare, Sezione di Milano, Italy
⁸Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy
*Now at LBNL, USA
[†] PLASMONX national representative
^{††} FLAME commissioning manager

Summary

Summary

Preliminary e- acceleration experiment al ILIL-CNR

A (precursor) experiment has been carried out at the Intense Laser Irradiation Laboratory of the INO-CNR in Pisa, demonstrating e- LWFA for the first time in Italy, using a smaller scale (2TW) laser system

TS and interferometry show self-guiding

Conclusions and planned work

- A 250TW laser laboratory for LPA is now fully operational at LNF-INFN in the framework of the INFN project PLASMONX
- The lab is equipped with an underground, radiation shielded target area for "laser-only" experiments awaiting authorizations
- A first "test" experiment has been conceived and is now under commissioning, mainly devoted to assess the laser system figures and performances
- PIC simulations shows that e- bunches should be obtained in such a test experiment with energy up to 900 MeV
- Rapidly approaching self-injection LPA measurements

Co-authors and institutions

