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A high-resolution beam-shaping system (HRABS) 
was demonstrated in a multi-terawatt laser

E19206

Summary

• Fluence spatial variations and wavefront errors limit the laser-system 
energy and focusable power density on target

– HRABS improves both using a spatial-light modulator  
in a closed loop

• Beam shaping was demonstrated in an OPCPA-based multi-terawatt 
laser

– peak-to-mean of fluence is reduced by about a factor of 2

– HRABS is ready to be implemented in OMEGA EP long-pulse 
beamlines

• Damage threshold of the SLM is 230 mJ/cm2

S.-W. Bahk et al., Opt. Express 18, 9151 (2010).

HRABS improves the performance of high-power laser systems.



An electrically addressed SLM and a high-resolution 
Shack-Hartmann wavefront sensor are primary devices
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HRABS controls amplitude by introducing high 
frequency phase and scattering light (carrier method)

E19208 V. Bagnoud and J. D. Zuegel, Opt. Letter 29, 295 (2004).
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The spatial registration error should be less than  
half the resolution of the measurement system
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• Numerical optimization is used to overcome this problem

Perfect registration Magnification error = 2.3% Translation error = 90 nm Rotation error = 21 mrad
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The influence of energy fluctuation is stabilized by using 
a spatially disjoint anchoring technique
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• The fluctuation in total energy of a laser beam renders the closed-loop 
operation unstable

  – the algorithm cannot distinguish whether the fluence change was 
caused by its own control or by energy fluctuation

• A two-step iteration overcomes this problem (assuming no extra energy 
measurement)

  – two disjoint regions are sequentially used for energy scaling
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Illustration of the two-step iteration process used in flat-amplitude shaping



HRABS was installed in a multiterawatt system*
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• SLM is installed after OPCPA

– OPCPA is attenuated to 10% of the full energy

• Two wavefront sensors were installed 

– WFS1: near SLM, WFS2: on the compressor diagnostic table

– wavefront sensors provide near-field images as well as wavefront

Glass amp

Image relay 2  Diag. 
table

1:3.9
Image relay 1

2.5:1

1:1.2

1:2

5:1

WFS1

SLM
HRABS

Exp. chamber

Image relay 3 WFS2

OPCPA Compressor

*V. Bagnoud et al., Appl. Opt. 44, 282 (2005).



Peak-to-mode of the OPCPA beam  
improves from 45% to 20%

E19212

3

0.0

0.4

0.8

2

1

0
0

mm

Lineout comparison
Fluence

(before shaping)
Fluence

(after shaping)

A
rb

it
ra

ry
 u

n
it

s

A.U.5

0

–5

m
m

5–50
mm

5–50
mm

5–5

Before
Design
After

Relative rms / rms of 

Peak-to-mode / max of 

F
F F

ideal

actual ideal-
f p

F
F F

mode

actual mode-
f p

Closed-loop with WFS1

• p–m = 45%

• relative rms = 21% 

• p–m = 20%

• relative rms = 5% 



OPCPA wavefront is corrected within 0.01 waves rms 
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• p–v = 0.6 waves

• rms = 0.09 waves

 

• p–v = 0.066 waves

• rms = 0.007 waves
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Beam shaping converges within 20 iterations
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Fluence movie Wavefront movie

* Fluence and wavefront map at each iteration  
belongs to the same OPCPA pulse
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Illustration of mapping error
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Wedge aberrations in the system introduce  
image blurring at WFS2

E19218

• A wedge in the imaging system breaks  
the Abbe sine condition

–  the more the tilt and the wedge angle, the more blurred

•  A 3° wedge was found and removed for WFS2 imaging
 – there are still unexplained wedges distributed in the system

SLM map is numerically smoothed at each iteration.



Peak-to-mode of the OPCPA beam  
improves from 40% to 25%
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SLM map is smoothed by convolving with a blurring function.

• p–m = 40%

• relative rms = 9% 

• p–m = 25%

• relative rms = 7% 



OPCPA wavefront is corrected within 0.04 waves rms
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• p–v = 0.67 waves

• rms = 0.16 waves

 

• p–v = 0.19 waves

• rms = 0.04 waves

 

SLM map is smoothed by using Legendre basis functions.



Laser-damage threshold of the SLM  
at 5 Hz is 230±10 mJ/cm2
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 The SLM sample survived 9 h of irradiation (5 Hz) 
at an apparent energy density of 230 mJ/cm2.

  –  cf. apparent damage fluence is 280 mJ/cm2. 

Fth: damage threshold
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• Small-spot damage threshold ranges 
from 0.6 to 2 J/cm2 indicating defect-
limited performance

– large area damage test is needed

• The damage threshold is determined 
by slowly ramping up the energy over 
a large sample area

– distribution of defects is sparse 
(about 4 pixels over the whole 
area)

– damage does not necessarily 
occur at the peak fluence

– three samples (one active, two 
passive) exhibit the same damage 
threshold



Summary/Conclusions

A high-resolution beam-shaping system (HRABS) 
was demonstrated in a multi-terawatt laser
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• Fluence spatial variations and wavefront errors limit the laser-system 
energy and focusable power density on target

– HRABS improves both using a spatial-light modulator  
in a closed loop

• Beam shaping was demonstrated in an OPCPA-based multi-terawatt 
laser

– peak-to-mean of fluence is reduced by about a factor of 2

– HRABS is ready to be implemented in OMEGA EP long-pulse 
beamlines

• Damage threshold of the SLM is 230 mJ/cm2

S.-W. Bahk et al., Opt. Express 18, 9151 (2010).

HRABS improves the performance of high-power laser systems.


