

High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers

P. Ramirez¹, <u>D. Papadopoulos^{1,2}</u>, A. Pellegrina^{1,2}, F. Druon¹, P. Georges¹,

² Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Palaiseau, France
 ³ Institut de la Lumière Extrême (ILE), Palaiseau, France

A. Jullien, X. Chen, A. Ricci, J. P. Rousseau, R. Lopez-Martens

Laboratoire d'Optique Appliquée (LOA), ENSTA ParisTech, Ecole Polytechnique, Palaiseau, France

dimitris.papadopoulos@institutoptique.fr

ICUIL, Watkins Glen, 26th September-1st October 2010

Motivation

Ultrashort seed for the OPCPA based Front End of the ILE 10 PW Apollon

•Experimental setup/results

-HCF spectral broadening/pulse compression
-Crossed polarized wave (XPW)
-Spectral/Efficiency (dispersion)
-FROG/CEP/CR measurements
-Reliability

Summary/next steps

•The Apollon 10 PW Front End system

•The High CR, CEP stable, sub-10 fs, ~100 μ J, 1 kHz seed @ 800 nm

The front end of a... front end

•The High CR, CEP stable, sub-10 fs, ~100 μ J, 1 kHz seed @ 800 nm

Ti:Sa system (Femtopower) CEP stable, CR~10^8 25 fs, 1.5 mJ, 1 kHz

•Commercial system, turn key operation

- •Three CEP stabilization loops
- Active pointing stabilization (3x)

The front end of a... front end

•The High CR, CEP stable, sub-10 fs, ~100 μ J, 1 kHz seed @ 800 nm

•Commercial system, turn key operation

- •Three CEP stabilization loops
- Active pointing stabilization (3x)

Well established/flexible technique
Optimized CM compressor
Nonlinear stage/stability issues

The front end of a... front end

•The High CR, CEP stable, sub-10 fs, ~100 μ J, 1 kHz seed @ 800 nm

•Commercial system, turn key operation

- •Three CEP stabilization loops
- Active pointing stabilization (3x)

Well established/flexible technique
Optimized CM compressor
Nonlinear stage/stability issues

Proved CR enhancement capacity ~10⁵ (ext. pol.)
 Temporal & Spectral cleaning: I(t)_{XPW}∝I³(t)_{FW}
 >Intensity limited process I~10¹²W/cm²:max
 energy, efficiency

>Nonlinear stage/stability issues

 Challenging combination of the sub-systems capacity towards ~5 fs high energy pulses, reliable seed source

energy, efficiency

>Nonlinear stage/stability issues

5-10 fs, CR>10¹⁰, ~100 μ J

Hollow core fiber pulse compression

ICUIL 2010

High energy XPW

☆~10¹² W/cm² on the XPW crystal: Vacuum, long focal distance

1 mm BaF₂, [011]-cut: max XPW efficiency ~15%
Polarization extinction ratio ~5[.]10⁻³: estimated CR improvement ~10²

A. Jullien et.al. "High fidelity ultra-broadband frontend for high-power, high-contrast few-cycle lasers," accepted Appl. Phys. B (08/2010)

XPW Spectrum/Efficiency vs dispersion

XPW spectrum/Dispersion

15²⁰ 25 14 13 1 mm vacuum 12 11 XPW efficiency (%) 10 a Compression tolerance <5fs² 0 25 30 -10 -5 0 5 10 Dispersion (phi0 + x) fs2 15 20

XPW efficiency/Dispersion

Optimum pulse compression (phi0+6)=> Best efficiency 15% (~20% corrected)=> ~100 μ J

Spatial characterization

Incident beam on the crystal (1.8-2mm diameter)

After the XPW

FROG measurements HCF->XPW

•HCF: 4.4 fs, 0.7 mJ

•XPW: <5fs, ~100 µJ (80 µJ)

Retrieved Trace

Original Trace

ICUIL 2010

•3 ω correlator, full dynamic range ~10¹¹ (1mJ), reduced spectral acceptance (~100 fs pulses)

•CR improvement by at least 10² =>HCF CR~10⁸ -> XPW CR~10¹⁰-10¹¹ (estimated)
 •No compression for the seed=>Glan polar. (ext.10⁵)=> XPW CR ~10¹² (expected)

CEP stability measurements

Int. time : 100 ms (10 shots)

Home made f-2f=> feedback to the slow loop of Femtopower (Menlo APS800)
CEP ~300 mrad=>CEP preservation: (Femtopower alone->~200 mrad)
Three feedback loops, covered setup, reduced propagation path

•Day to day reproducibility

•XPW changes mainly due to variation of the HCF output spectrum almost without effecting the efficiency

•Easy readjustment (gas pressure, HCF coupling, HCF compressor)

•Pulse to pulse rms stability:

✓ Femtopower: 0.7%
✓ HCF:1.1%
(active pointing stab.)

>XPW:2.5% (more compact, double XPW)

•Spectro-temporal cleaning of high-energy few-cycle pulses by an optimized vacuum XPW filter

•Generation of high CR, CEP stable, sub-5fs, ~100 μ J (80 μ J) pulses

 Ideal ultra-broadband seed source for high energy/intensity systems

...double crystal XPW configuration=> Improved efficiency/stability

...preliminary low energy NOPCPA experiments=> CEP stability, max amplified bandwidth, pulses compressibility

>...03/2011→ps-NOPCPA (>10 mJ), 2012→ns-NOPCPA (100 mJ)

Thank you!

The Front End: ps/ns strategy

The Front End: Table view setup

The Front End: Table view

- •>13% XPW efficiency
- •Polarization extinction ration ~5.10^-3
- •Estimated CR improvement ~10^2

•XWP Spectral filtering

•XWP pulse compression/cleaning

•Direct XPW sub-10 fs seed

Compact, reliable, single nonlinear stage seed configuration
Short enough more energetic pulses, High CR, CEP conservative
Lower coherent CR, rectangular like spectrum

z-cut vs holographic cut

L. Canova et.al. "Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation," Appl. Phys. Letters (2008) 92.

Input dispersion influence

A. Jullien et.al. "Nonlinear spectral cleaning of few-cycle pulses via cross-polarized wave (XPW) generation," Appl. Phys. B (2009) 96.