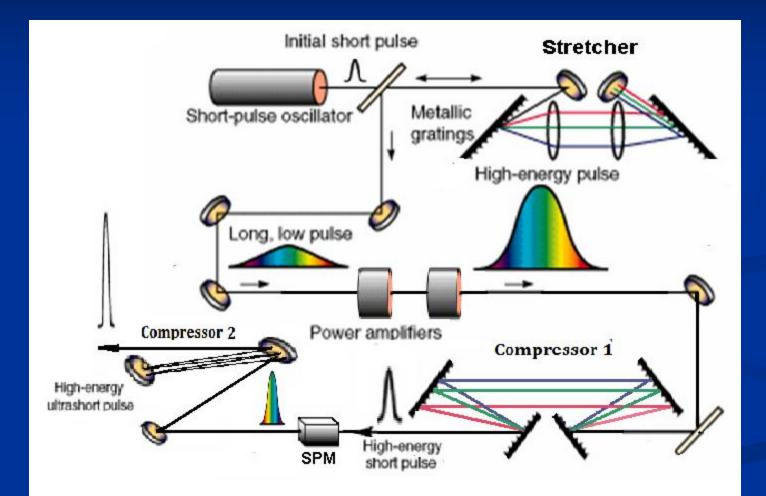


Compression of Ultrahigh Power Laser Pulses.

<u>V. Chvykov¹,</u> C. Radier², G. Chériaux², G. Kalinchenko¹, V. Yanovsky¹ G. Mourou ²

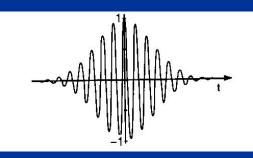
 Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel blvd, Ann Arbor, MI 48109-2099 vchv@eecs.umich.edu
 Laboratoire d'Optique Appliquée, ENSTA, Ecole Polytechnique, CNRS UMR 7639, Chemin de la Hunière, 91761 Palaiseau Cedex, France

> ICUIL 2010 TO17 Tuesday, September 28 2010


CPA-SPM double compression (origins).
Previous experiments and results.
SPM of the Super Gaussian Beam
Proof-of-principle experiment and results.
Complications and their possible resolution.
Conclusion.

CPA+SPM – two stage compression.

CENTER FOR ULTRAFAST OPTICAL SCIENCE



SPM – the method for coming to new transform limit

Linear chirped pulse

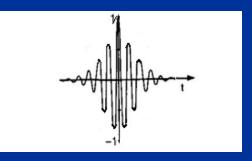
Fourier transform limited pulse

 $E = E_0 exp(-t^2/2\tau_0^2) exp(i\omega_0 t)$

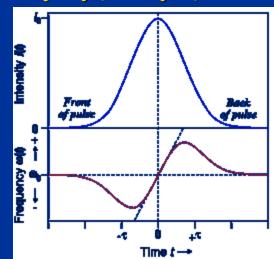
$i\frac{\partial A}{\partial z} = D^2 \frac{\partial^2 A}{\partial \tau^2} + iD^3 \frac{\partial^3 A}{\partial \tau^3} - N|A|^2 A$

$E = E_0 exp(-t^2/2 \tau_0^2) exp(i(\omega_0 t - at^2))$

A(z, \tau) - slow varied amplitude, $\tau = (t - \beta_1 z)$, t and z - time and special coordinate of pulse distribution $D^2 = \frac{1}{2L_{D2}}, \quad D^2 = \frac{1}{6L_{D2}}, \quad N = \frac{1}{L_{T2}}, \quad L_{D2} = \frac{T_0^2}{|\beta_2|}, \quad L_{D3} = \frac{T_0^3}{|\beta_3|}, \quad L_{nl} = \frac{c}{n_2 \omega_0 I_0}$


For intensity ~ 1 TW/cm² and fused silica for bulk material we have coefficients of the right hand terms of the equation $D^2 = 0.04$, $D^3 = 0.004$, N = 2.

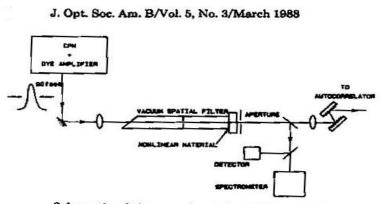
$$A(z,\tau) = |A(0,\tau) \exp(i|A(0,\tau)|^2 z/L_{nl}) = A(0,\tau) \exp(-\tau^2/2T_0^2)$$


$$\varphi = \omega_0 \tau \cdot \exp(-\tau^2/T_0^2) z / L_{nl} \quad \frac{\partial \varphi}{\partial \tau} = \omega = \omega_0 \cdot \tau \exp(-\tau^2/T_0^2) z / T_0^2 L_{nl}$$

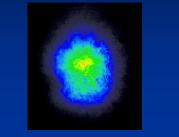
$$\omega(t) = \omega_0 - \alpha \cdot t$$

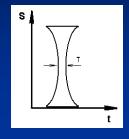
New transform limited pulse

 $E = E_0 \exp(-t^2/2\tau'_0{}^2) \exp(i\omega_0 t)$ $\tau'_0 = \tau_0 / (1 + 4 \tau_0{}^4 a^2)^{1/2}$



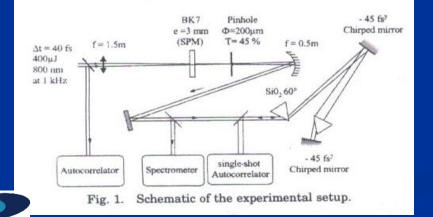
CENTER FOR ULTRAFAST OPTICAL SCIENCE


Previous experiments and results.



Near field spatial filtering of the Gaussian beam profile of the laser pulse.

Schematic of the experimental apparatus used for highpower compression.

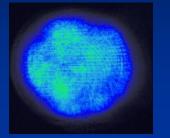


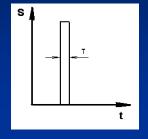
Peak intensity ~ 0.5*10¹² W/cm², energy of incident pulse – 0.5mJ, bulk of material – 1.2 cm plate of quartz. Pulse compression by factor of 5 (from 92 fs to 19 fs) with a few percent transmission efficiency

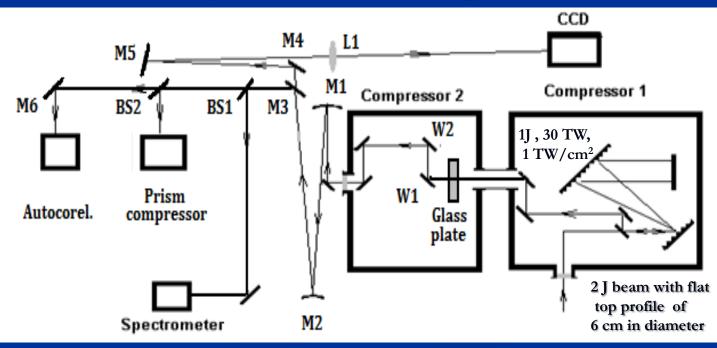
Far field spatial filtering of the Gaussian beam profile.

106 J. Opt. Soc. Am. B/Vol. 20, No. 1/January 2003

Peak intensity ~ 8*10¹² W/cm², energy of incident pulse – 0.48mJ, bulk of material – 0.3 cm BK7. Pulse compression by factor of 3 (from 42 fs to 14 fs) with 45 % transmission efficiency

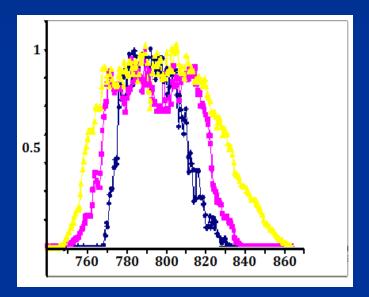

Limitations for both cases are the low compressed pulse energy and low transmission efficiency These could be overcome by utilization of a beam with super Gaussian transverse energy distribution.

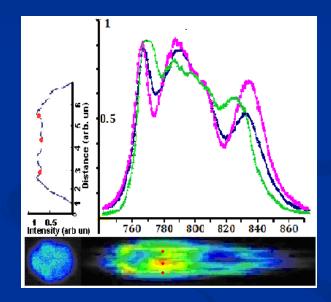



CPA+SPM of the beam with super-Gaussian transverse energy distribution.

Near field profile of the Hercules laser pulse (6J)

Layout of the CPA+SPM experiment



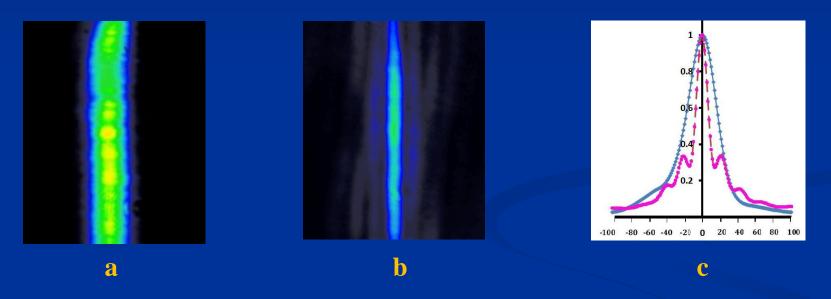

The spectral broadening using self-phase modulation.

Spatially integrated pulse spectrums.

The spatially resolved spectrum.

Blue curve (diamonds) represents the spectrum without the glass plate (no SPM), pink curve (squares) – with plate of the 0.8 cm thickness and yellow curve (triangles) – with glass plate of 2 cm thickness.

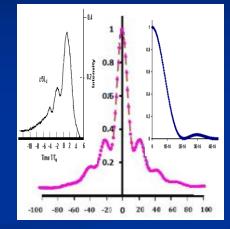
Bottom picture: on the left-output beam of the HERCULES laser, on the right - spectrally resolved beam passed through 2cm glass plate, above: on the left - spectrally integrated spatial energy distribution, on the right - lineout of the spectrum taken at the spatial points shown as red dots.



Results of the Autocorrelation Measurements of the SPM Pulses.

a – autocorrelation picture of the initial transform limited pulse (30 fs), b - compressed
 pulse after SPM, c – autocorrelation trace of the initial transform limited pulse (solid blue
 line) and compressed pulse after SPM (dashed pink line corresponded 14fs).

Complications and their resolution.



Instability and Wings of autocorrelation trace.
 Prisms compressor with prisms from SF10.

$$i\frac{\partial A}{\partial z} = D_2 \frac{\partial^2 A}{\partial \tau^2} + iD_3 \frac{\partial^3 A}{\partial \tau^3} - N|A|^2 A \qquad D_3 = \frac{|\beta_3|}{T_0^3}$$

For intensity ~ 0.3 TW/cm^2 and equal dispersion properties we have coefficients of the right hand terms of the equation $D_2 = -1.8$, $D_3 = -1.1$, N = 0.6

Possible solution: replace prisms with chirped mirrors.

White light generation.

In our experiments up to 30% of incident energy were exhausted into white light generation.

Possible solution: for SPM to use thinner plate of materials with low phase matching for parametrical harmonic generation.

In E. Mével, O. Tcherbakoff, F. Salin, E. Constant; J. Opt. Soc. Am. B; 20 105 (2003) with 3mm BK7 white light generation was negligible.

- We suggest using super-Gaussian beam profile for CPA + SPM double compression method to avoid limitation of the incident energy and to increase transmission efficiency.
- We demonstrated more than doubling of the spectral pulse width via SPM, while maintaining a spatially uniform spectrum for 30TW- laser pulse with super-Gaussian beam profile.
- We demonstrated the possibility of pulse compression from 30 to 14 fs for 30TW- laser pulse.
- This scalable compression method if used with chirped mirrors will allow generation of ~10fs pulses at petawatt and exawatt power levels..

