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Temporal characterization diagnostics are paramount
to the development and operation of high-intensity

laser systems
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 The temporal characterization of high-intensity laser systems
is a multifaceted challenge

e Temporal characterization is required to develop these laser systems
and understand target physics

— measurements of the on-target power/intensity
— characterization of space—time coupling
— temporal contrast measurement

e Various concepts and diagnostics for temporal characterization
are reviewed

If you cannot measure it, you cannot improve it (Lord Kelvin).
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Measuring the electric field E (x, y, t) is the goal

of optical pulse characterization
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e Other physical quantities of interest can equivalently be measured

E (X, Y, t) /> E (kX! ky! t)
Fourier transforms (t, W)

E (x,y, w) W E (ky, ky, @)

* In many cases, an “averaged” E (t) is measured, which might not be
a good description of the pulse interacting with the target

 Measuring E (t) requires temporal resolution
— electronics (fast photodetection or modulation)

— nonlinear optics

E19272



There are many challenges to the temporal

characterization of high-intensity laser sources
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* The repetition rate is low in some cases, ~1 shot per hour

 The bandwidth can be very wide, ~200 nm for all OPCPA systems
at 910 nm

 The pulse can be far from Fourier-transform limited

o Spatial properties can be impaired by architecture and components,
making fiber coupling or nonlinear interactions difficult

— near field: scattering, clipping, grating tiling

— far field: aberrations (large-scale beamlines, thermal load,
large optics)

* Residual space—time coupling might prevent accurate characterization

E19273



The second-order autocorrelation only
provides indirect temporal information

UR
LLE
| | |
. FT limited
w 0.8 -
TI Nonlinear 5 0.4 i
crystal -
. > | = 0.0 ! ! !
A > | E | \ Chirped
Lens % 0.8 Irpec.
N € \*\ A(7) = [I(t) I(t-T)dt ;'; 0.4
0.0
-50 0 50
Time (fs)

* Intensity autocorrelations measure how concentrated the energy is
aroundt=0

 Still the work-horse of temporal diagnostics, even with significant
drawbacks

— symmetric
— very different pulses might have undistinguishable autocorrelations
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Single-shot temporal gating can be obtained
with time-to-space encoding

Nonlinear
Beam 1 crystal
. o % x)= [ I(t)I[t—T(x)]dt
e
Beam 2

* Noncollinear nonlinear interaction, possibly using pulse-front-tilt from a diffraction
grating, leads to time-to-space mapping for single-shot autocorrelators

e Various implementations of this concept

— time-expanded single-shot autocorrelator (LLE) uses pulse-front-tilt to cover
a 50-ps temporal range

— contrast diagnostics*
— single-shot SHG-FROG**

* Might be degraded by beam profile and wavefront

*J. Collier et al., Laser Part. Beams 19, 231 (2001), I. Jovanovic, presented at the CLEO/QELS
Conference, Baltimore, MD, 6-11 May 2007 (Paper JThD137)
E19275 **C. Haefner, this conference (Paper TP2).



The theoretical framework of pulse characterization

iIs well established*
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 Techniques measuring E (t) without assumption require a time-

stationary (e.g., a spectrometer) and time-nonstationary (e.g., a nonlinear
interaction) element

— necessary but not sufficient condition
— autocorrelators only have a time-nonstationary element

* Pulse-characterization strategies classified according to the order
and type (phase/amplitude) of the stationary/nonstationary elements

— eight classes of techniques
— FROG-like techniques: temporal modulation + spectrometer

— SPIDER-like techniques: linear temporal phase modulation + spectral
interference

There are many pulse-characterization concepts and
implementations, but only a few have prevailed in practice.

E19276 *I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).



Frequency-resolved optical gating (FROG) is based
on phase retrieval from a nonlinear spectrogram
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e FROG measures a time-frequency representation of the pulse using

a nonlinear interaction
Phase-retrieval

algorithm
S(w,) = | [E(t) g(t-T) expliot)dt|? > E(1)

e Can be operated in single shot with time-to-space encoding
— sensitivity to input-beam profile
— hard to get long temporal range
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A single-shot SHG FROG device with large temporal
range has been used on the prototype NIF-ARC front end
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e 20-ps temporal window (up to ~6-ps pulse duration)

E19278 Data courtesy of C. Haefner, this conference (Paper TP2).



Spectral-shearing interferometry directly measures
the spectral phase of the test pulse
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SPIDER uses a nonlinear interaction with a chirped

pulse to generate a relative spectral shear
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e Spectral shearing using nonlinear optics with a chirped pulse
— stretched pulse has linear time-to-frequency relation
— nonlinear interaction of two replicas of the main pulse
— interferometric signal encoded in spectral fringes

e Variants of SPIDER for very broadband operation
— encoding of interferometric signal in spatial fringes

— zero-delay operation
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A zero-delay version of SPIDER uses encoding

in spatial fringes
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* Two noncollinear chirped pulses interact with a single pulse under test
— no need to replicate pulse under test

— simple calibration by setting the delay between chirped pulses to zero

Spatial fringes decrease the spectral-resolution
requirement for the spectrometer.

M. Kosik et al., Opt. Lett. 30, 326 (2005).
S.

E.
E19280 A. S. Wyatt et al., Opt. Lett. 31, 1914 (2006).



Linear electro-optic spectral-shearing interferometry (EOSI)
allows for sensitive versatile pulse characterization*

UR
LLE
-EOSl head---------------
T - Beam
PBS > - Optical fiber

Intensity
Phase
Spectrum

%% E — Electrical
1 A/2 Fiber -0
! ? coupler I

Spectrograph

CCD

Pulser

Trigger
e Spectral-shear equivalent to linear temporal-phase modulation

e Linear temporal-phase modulation obtained from electro-optic phase
modulator driven by linear voltage

— high single-shot sensitivity (~1 nJ)
— time window limited by voltage linearity (~100 ps)

E19281 *J. Bromage et al., Opt. Lett. 31, 3523 (2006).



EOSI can characterize pulses with duration

over 100x their Fourier-transform limit
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High-intensity lasers rely on components having
spectrally varying spatial properties
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* Measuring the on-shot electric field E(x,y.t) is the ultimate goal,
although simpler endeavors have high payoff

— independent characterization of individual optical components
— characterization with high-repetition-rate low-energy seed source
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Space—time coupling can be characterized
interferometrically with a reference pulse
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 In most cases, the electric field E(r, o) is measured relative
to an unknown space-time-coupling-free reference

 No requirement for
— dispersion conpensation (@ only)
— adaptive optics (r only)

E19285



Spatial variations of the group delay can be mapped out
directly with spatially resolved photodetection*
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e Combination of two fields leads to spatial fringes where the
relative delay is smaller than the source coherence time

o Spatial group delay in the test field is mapped out by scanning
the relative delay

o Extracting higher-order spatiotemporal terms is difficult
in the time domain

E19286 *Z. Bor, Z. Gogolak, and G. Szabo, Opt. Lett. 14, 862 (1989).



Spectral interferometry with a reference field allows

the measurement of spatiotemporal coupling
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*J. Bromage, C. Dorrer, and J. D. Zuegel, this conference (Paper MO2).
E18584d P. Bowlan, P. Gabolde, and R. Trebino, Opt. Express 15, 10,219 (2007).



A spectrally resolved spatial shearing interferometer
measures space-time coupling without a reference pulse
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* A spectrally resolved spatial-shearing interferometer measures
the spatiospectral phase up to an unknown spectral function
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C. Dorrer and I. A. Walmsley, Opt. Lett. 27, 1947 (2002).
E19287 C. Rouyer et al., Opt. Express 15, 2019 (2007).



High-dynamic-range measurements are crucial

for the development of high-intensity laser sources
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e Coherent and incoherent light before the main pulse can negatively
impact the laser—target interaction

— prepulses from seed laser and regenerative amplifiers
— laser and parametric fluorescence

— spectral modulations from stretcher (mostly phase) and from pump
noise in OPCPA (mostly amplitude)

— incomplete pulse recompression and/or sharp spectral clipping

* The dynamic and temporal ranges requirements are beyond the
capabilities of conventional pulse-characterization devices

— dynamic range ~1012
— temporal range ~1 nsto 1 us

* Dedicated contrast diagnostics have been developed to achieve
these goals
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The nanosecond temporal contrast is measured
with calibrated fast photodetection
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e Fast photodetection provides long range power measurements
with adequate temporal resolution

— temporal resolution limited by components and detection
bandwidth, ~200 ps

— temporal range set by oscilloscope memory, ~1 us

— dynamic range set by photodiode damage threshold
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High-resolution contrast measurements

use nonlinear optics
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* Instantaneous nonlinear response can be used to gate optical pulses
— generation of high-contrast gating pulse at 2cw by SHG
— gating of pulse under test at 1w by 2w pulse

— variable attenuation, variable gain, background-free detection at 3w
ensure high dynamic range

— temporal resolution ~ fraction of input-pulse duration
— temporal range set by translation stage

e Single-shot implementations have been demonstrated using
time-to-space encoding* or pulse replication**

*J. Collier et al., Laser Part. Beams 19, 231 (2001), I. Jovanovic et al., presented at the CLEO/QELS
Conference, Baltimore, MD, 6—11 May 2007 (Paper JThD137).
E19290 **C. Dorrer, J. Bromage, and J. D. Zuegel, Opt. Express 16, 13,534 (2008).



Optical-pulse replication allows for single-shot
correlation measurements over a large temporal range
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* Replication of the 2w gating pulse is a discrete version of time-to-space
encoding
— sequence of temporally delayed and spatially displaced gating pulses
— 3w signal measured with a CCD, with time-to-space calibration

* All gating beams have similar properties, which should decrease
the sensitivity of the diagnostic-to-input spatial properties
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Summary/Conclusions

Temporal characterization diagnostics are paramount
to the development and operation of high-intensity

laser systems
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 The temporal characterization of high-intensity laser systems
is a multifaceted challenge

e Temporal characterization is required to develop these laser systems
and understand target physics

— measurements of the on-target power/intensity
— characterization of space—time coupling
— temporal contrast measurement

e Various concepts and diagnostics for temporal characterization
are reviewed
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