

energie etomicue - energies chematives

Overview of PETAL, the multi-Petawatt project on the LIL or LMJ facility

N. Blanchot and the PETAL team

CEA-CESTA, F33114 Le Barp, France

28/09/2010

PETAL : objectives

energie etomique - energies phemotives

Coupling of PETAL with Quads of LIL or LMJ 1 quad = 30 kJ / ns / 3 ω

- Energy > 3 kJ,
- Wavelength > 1053 nm,
- Pulse duration between 0,5 and 10 picoseconds,
- Intensity on target > $10^{20} 10^{21}$ W/cm²,
- Intensity contrast (short pulse) : 10⁻⁷ at -7 ps,
- Energy contrast (long pulse) : 10⁻³.

PETAL Project Phases

Front-End Architecture* : OPCPA Technique

PAM Performances

PAM output* :

energie etomique - energies phemotives

- Flat top square beam
- Stretched pulse : Δt =4,5ns,
- Spectrum $\Delta\lambda$ =8nm

Beam shaping for compressor scheme :

- Phase plate + spatial filter

±+0,000e+000
grille=300x300
Nata+-6.000e-004
Xaapx+6.000y-004
Tals=-6,000e-004
Tam/+6.000e-004
Pain+-8.9628+011
Pame=0.142e=000

* E. Hugonnot et al., Appl. Opt. **46** (2007)

Integration of the PAM

Pump side

energie etomique - energies ahematives

OPCPA side

PAM in the compressor room

Integrated PAM Performances

 \rightarrow Long time and stable running under investigation for the integrated PAM

energie etomique - energies ahematives

Tilts of crystals in their neutral axis : OPG (optical parametric generation)

Vacuum tube in the 1st arm (pump)

CEA / CESTA

28/09/2010

Segmented beam Compression Scheme

Compression stages on the LIL facility

energie etomique - energies ahem-

CEA / CESTA

PETAL : 2D- Spectral Interferometry

PETAL : synchronization at 50 fs with 8 nm, sub-apertures, with longitudinal and transverse chromatisms

* N. Blanchot et al., Plasma Phys. Control. Fusion, **50** (2008) & N. Blanchot et al., Opt. Express **18**, 10088-10097 (2010)

CEA / CESTA 28/09/2010 10

Sub-aperture beams phasing

PETAL Project Phases

Laser bay

PETAL amplifier section

14

Filtration chambers and cavity end

energie etomique - energies ahematives

From cavity amplifier 2% hygrometry

Polarizer 35% hygrometry

Amplifiers : Fabrication in progress*

* Prototype : tests in Q4 - 2009

- Transverse gain measurements
- Cooling system
- Contamination measurements

CEA / CESTA

Compression wavefront correction

Wavefront deformation due to grating modification under vacuum : pre-correction in air

CEA / CESTA

PETAL Project Phases

Transport mirrors for compressed beam

2.5 J/cm² at best... Spec at 4 J/cm² @ 500 fs

• Extrapolation at 45° incidence angle for transport :

• Mirror campaign : Mirror for future MLD gratings tested at 72° in pola rization S > 4 J/cm² @ 500 fs

œ

energie etomique - energies phemolives

- \rightarrow Efforts on the MLD (fabrication process) have to be done
- Specifications with the LIL modulations, **beam smoothing** for PETAL with transverse chromatism \rightarrow decrease of the specification

Monochromatic pulses

Femtosecond pulses

N. Bonod et al, Opt. Comm. **260**, 649-655 (2006), J. Neauport et al, Opt. Express **15**, 12508-12522 (2007), S. Palmier et al, Opt. Express **17**, 20430-40439 (2009)

Focusing configuration : top view

Pointing mirror

Transport Compression Focalisation in LMJ

Reservation for 2 beams configuration on target

PETAL contributors

energie etomique - energies ahematives

F. Laniesse, B. Remy, N. Blanchot, H. Ward, A. Roques, O. Bach, L. Hilsz, V. Denis
R. Ferbos, C. Damiens-Dupont, G. Behar, Ph. Gibert, D. Lebeaux, C. Grosset-Grange,
JP Goossens, H Coic, E Hugonnot, E Mazataud, J Luce, D. Bigourd, S. Noailles, C. Chappuis
T. Berthier, F. Laborde, E. Bar, D. Raffestin, M. Mangeant ,C. Présent, F. Sautarel, T. Lacombe
M.& M. Manson, D. Valla, M. Sautet, F. Dumon, T. Longhi, F. Granet, C. Chappuis,
P. Manac'h, P. Patelli, C. Montassier, E. Perrot-Minnot, Y. Paupierre

And many other contributors !