

# New ion acceleration mechanisms in relativistic laser-nanotarget interactions

# September 27th 2010

Presented by:

**Daniel Jung** 

djung@lanl.gov

Los Alamos National Laboratory Ludwig-Maximiliam Universität München Max-Planck-Institut für Quantenoptik





#### **Colleagues and Collaborators:**

LANL: Short pulse Team (P-24 & XCP-6): B. J. Albright K. Bowers J. C. Fernández D. C. Gautier B.M. Hegelich C. Huang D. Jung S. Letzring S. Palaniyappan R. Shah H.-C. Wu L. Yin

P-24 Trident: F. Archuleta R. Gonzales T. Hurry R. Johnson S.-M. Reid T. Shimada *Kurchatov Institute:* T. Ivkova V. Liechtenstein E. Olshanski A. Spitsin

LMU München: H. U. Friebel **D** Frischke D. Habs B. M. Hegelich A. Henig R. Hörlein C. Huebsch D. Jung D. Kiefer H.-J. Meier J. Schreiber J. Szerypo T. Tashima X. Yan

Support by LANL LDRD Program Office, Office of Fusion Energy Sciences, Domestic Nuclear Detection Office and LMU Excellent.



#### Current status and motivation



Volumetric interaction with an overdense target : High contrast & energy pulses + free standing nm-targets LMU



LOS AIAMOS Operated by Los Alamos National Security, LLC for NNSA

EST.1943



### **Typical Experimental Setup & Diagnostics:**









#### NNSX

#### Laser parameters:

EST.1943

| Energy on target | ~80J (@1054nm)                          |
|------------------|-----------------------------------------|
| Pulse duration   | ~500fs                                  |
| Intensity        | ~2-5x10 <sup>20</sup> W/cm <sup>2</sup> |
| a <sub>0</sub>   | ~12-19                                  |
| Polarization     | s, CP                                   |
| OAP Mirror       | F/3                                     |
| Rep.rate:        | 1 shot / 45 min.                        |
| Contrast :       | < 5 x 10 <sup>-10</sup> (prepulse)      |
|                  | < 2 x 10 <sup>-12</sup> (pedestal)      |
| Target thickness | 3nm-1000nm                              |
|                  |                                         |

Accumulation of 300+ shots! (from a "single" shot laser)



<sup>1</sup>D. Jung, et al., submitted to RSI

**LOS AIAMOS** Operated by Los Alamos National Security, LLC for NNSA NATIONAL LABORATORY

# Overcoming TNSA limitations with relativistic laser plasma interaction (BOA<sup>1,2,3,4,5</sup>):





UNCLASSIFIED LA-UR 10-06456

EST.1943

# Advancing towards (quasi-)monoenergetic spectra:



Linear scale

90



#### Exponential

Limited usability!

Energy (MeV)

2



60 70 80 on.

- lon fast ignition
- Hadron therapy



Linear scale

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST.1943

#### Monoenergetic spectra using circular polarization:



Ion Soliton Wave Acceleration during relativistic Transparency (SWAT)



Ion Solitary Wave Acceleration during relativistic Transparency (SWAT)

SWAT mechanism basics:

- a pronounced ion density spike forms when the target turns relativistically transparent
- the nonlinear ion density structure propagates across the plasma
- the nonlinear structure is, in fact, an ion soliton, whose properties can be derived analytically<sup>1</sup>

<sup>1</sup>L. Yin, B. J. Albright, et al., to be submitted (PRL)

LOS Alamos Operated by Los Alamos National Security, LLC for NNSA

EST.1943



#### Monoenergetic spectra using circular polarization: Ion Soliton Wave Acceleration during relativistic Transparency (SWAT)





LOS AIAMOS Operated by Los Alamos National Security, LLC for NNSA

EST.1943



#### Monoenergetic spectra using circular polarization: Ion Soliton Wave Acceleration during relativistic Transparency (SWAT)



#### Proton H<sup>+</sup> 42nm LP 42nm CP Monoenergetic spectra with CP, else exponential spectra #(PSL/MeV/msr) 10<sup>10</sup> In simulation soliton only forms for $\geq$ $\Delta E/E \pm 15\%$ C-ions; protons leave the target too @27MeV early due to their high q/m ratio 10<sup>9</sup> Peak energy 27MeV/nucl. ( $C^{6+}$ at 20 25 40 15 30 35 same shot 3MeV/nucl.) В proton data does not agree well with 101 $\succ$ 27nm CP 05nm CP Number (PSL/MeV/msr) 05nm LP = 27nm LP simulation 10 $t = 286.9 \text{ fs } 1 \mu \text{m}$ ave $t = 286.9 \text{ fs } 1 \mu \text{m}$ ave 1.00 linear circular 0.10 (E<sup>\*</sup>) 0.10 $F^{c}(E_{k})$ 10<sup>°</sup> 20 30 40 20 30 40 0.01 0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 E<sup>c</sup> (GeV) E° (GeV)

D. Jung, et al., to be submitted

LOS AIAMOS Operated by Los Alamos National Security, LLC for NNSA

EST.1943

UNCLASSIFIED LA-UR 10-06456



45

# Monoenergetic spectra by angular selection of ions:



Ion lobes from Break-Out Afterburner (BOA)<sup>1</sup>
Ion lobe generation:
3D VPIC simulation reveal an angular
The radial PM force

#### The radial PM force acts differently in parallel vs. perp. directions<sup>1</sup>

This leads to a pile-up of electrons leading to electron
 lobes

Space-charge makes corresponding ion lobes

strongly anisotropic electric field and angular dependent ion energy spectrum is to be expected:

- Off-axis: dominated by BOA, smooth, localized field
- On-axis: possibly a mixture of BOA (high energy) and other acceleration mechanisms (low energy), strongly varying fields

<sup>1</sup>L. Yin, et al., submitted to PRL(2010)

symmetry of electrons and ions

netic ener

(GeV)

Laser polarization axis (s)

NATIONAL LABORATORY

EST.1943

n<sub>e</sub> (VPIC)

: (micron)

(mn) z

-10 -5 0 1 y (micron)

n<sub>e</sub> (hydro solver)

Operated by Los Alamos National Security, LLC for NNSA



Elas

y (µm)

1.3

1.1

1.0

0.9



# Monoenergetic spectra by angular selection of ions:

Ion lobes from Break-Out Afterburner (BOA)

Ion spectra measured by up to TPs at 5 different angles (0°, 8°, 22° horizontal and vertical)<sup>1</sup>



UNCLASSIFIED LA-UR 10-06456

NATIONAL LABORATORY

EST.1943



# Monoenergetic spectra by angular selection of ions:

Ion lobes from Break-Out Afterburner (BOA)

Ion spectra measured by up to TPs at 5 different angles (0°, 8°, 22° horizontal and vertical)<sup>1</sup>





<sup>1,2</sup>D. Jung, et al., to be submitted

S Operated by Los Alamos National Security, LLC for NNSA



# Summary





LOS AIAMOS Operated by Los Alamos National Security, LLC for NNSA

EST.1943





#### Thank you for your attention!

Sciences, and LMU Excellent









\_OS

EST.1943

