A 160-nm Bandwidth Front End for Ultra-Intense OPCPA

J. Bromage, C. Dorrer, and J. D. Zuegel University of Rochester Laboratory for Laser Energetics ICUIL Conference Watkins Glen, NY 26 September – 1 October 2010

A front end based on white-light generation has been demonstrated for ultra-intense OPCPA

- LLE is developing the technologies necessary for an ultra-intense OPCPA system pumped by OMEGA EP
- A sequence of noncollinear optical parametric amplifiers (NOPA's) is seeded by white-light continuum generated in sapphire
 - 200 nm of spectral support (160-nm FWHM)
 - compressible to 13 fs (temporal Strehl \geq 0.7)
 - low spatiotemporal coupling
- The first stage has been characterized using a NOPA-based cross-correlator
 - dynamic range = 105 dB
 - temporal resolution = 250 fs

Prepulse contrast > 105 dB up to -5 ps (detection limited, chirped pulse)

All-OPCPA systems pumped by Nd:glass lasers are an option for producing ultra-intense pulses (>10²³ W/cm²)

- The front end must provide
 - broadband, compressible pulses, centered at 910 nm
 - high-quality, focusable beams
 - high temporal contrast

LLE's front end consists of a chain of NOPA's seeded by white-light continuum (WLC)

- Previous demonstrations used the idler from the first amplifier stage
 - chirped collinear (RAL, UK)
 - angularly dispersed (IAP, Russia)
- LLE's white-light continuum is generated in sapphire*
 - broadband (450 to 1020 nm)
 - stable (<1.3% rms)</p>
 - focusable (spatial Strehl > 0.7)
 - compressible (temporal Strehl > 0.7)
- WLC-based approach has advantages
 - no ultra-broadband oscillator
 - no need to precisely set the chirp of the pump pulse
 - no residual angular dispersion to compensate

The first phase in demonstrating an optical parametric amplifier line (OPAL) has been completed

The next two phases are being designed and built

The Phase 1 results show 200 nm of spectral support (160-nm FWHM), compressible to < 13 fs

- Measured spectrum and phase of NOPA1 after a two-prism compressor
- Compressed pulses to 1.07× the Fourier transform limit
- Temporal Strehl = 0.7
- Spectral support preserved by NOPA2

To achieve high temporal contrast, noise from the fiber-based pump laser is reduced using nonlinear processes and filters

UR

- White-light continuum (WLC) generation
 - threshold (1.3 μ J) means no continuum from satellite pulses or ASE
- Second-harmonic generation (SHG)
 - saturated, but still reduces the impact of pump noise on the NOPA
- Noncollinear optical parametric amplification (NOPA)
 - saturated gain (19 dB) in 250-fs/200-nm window

A cross-correlator (CC) with 105 dB of dynamic range has been developed to characterize NOPA1

UR 🔌

A cross-correlator (CC) with 105 dB of dynamic range has been developed to characterize NOPA1

- NOPA-based CC: sensitive (39-dB gain), broadband (150 nm), high resolution (250 fs)
- Background suppression: use RG1000 filters and measure idler component at $f_p + f_s$
- Dynamic range: calibrated filters (50 dB), detector gain (40 dB), and lock in (20 dB)

Degenerate OPA Cross Correlator–E. J. Divall and I. N. Ross (2004). Lock-in-based Autocorrelators–A. Braun *et al.* (1995), P. F. Curley *et al.* (1995).

UR 🔌

The prepulse contrast of the uncompressed pulse up to -5 ps is better than 105 dB

Note: the width of the pulse-under-test (~300 fs) has not been deconvolved from the measurement

E19193

Postpulses from the CC pump produce artifacts that can be mistaken for NOPA prepulses

E19194

All CC peaks before the main one are caused by pump postpulses and scale according to the small-pump limit

An exponential tail starts 60 dB below the main peak

- Not a CC artifact (follows √Ip scaling)
- Time constant (1/e) = 29 ps
- Energy contrast (peak-to-tail) = 41 dB
- Property of WLC (i.e., not added by NOPA1), but its physical origin is not yet understood

43 dB gain in the next two picosecond-pumped NOPA stages will reduce the tail to a negligible level

- Estimated contrast after the next two stages produce 5-mJ pulses at 5 Hz
- Assumes 43 dB of gain in a 2-ps-wide Gaussian window

A front end based on white-light generation has been demonstrated for ultra-intense OPCPA

- LLE is developing the technologies necessary for an ultra-intense OPCPA system pumped by OMEGA EP
- A sequence of noncollinear optical parametric amplifiers (NOPA's) is seeded by white-light continuum generated in sapphire
 - 200 nm of spectral support (160-nm FWHM)
 - compressible to 13 fs (temporal Strehl \geq 0.7)
 - low spatiotemporal coupling
- The first stage has been characterized using a NOPA-based cross-correlator
 - dynamic range = 105 dB
 - temporal resolution = 250 fs

Prepulse contrast > 105 dB up to -5 ps (detection limited, chirped pulse)

Spatially resolved spectral interferometry was used to quantify the spatiotemporal properties of NOPA1

^{*}J. Jasapara and W. Rudolph, Opt. Lett. 24, 777 (1999).

P. Bowlan et al., Opt. Express <u>14</u>, 11892 (2006).

Minimal residual higher-order spatiotemporal coupling was measured for optimum noncollinear alignment

- Spatiotemporal Strehl at focus = I_{peak}/(I_{peak}, no coupling, flat phase)*
- Measured spatiotemporal Strehl = ~0.4 to 0.5

Spatiotemporal Strehl values as high as 0.8 could be achieved, in principle, with separate spatial and spectral compensation.

The structure in the tail is stable from scan to scan

UR

LLE

E19199

The tail depends on the energy of the pulse used to produce the WLC

The WLC-seeded NOPA's show good spectral stability

The near-field and far-field profiles of NOPA2 satisfy the needs for Phase 2

