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A 160-nm Bandwidth Front End 
for Ultra-Intense OPCPA 
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A front end based on white-light generation has been 
demonstrated for ultra-intense OPCPA

E19186

Summary

•	 LLE is developing the technologies necessary for an  
ultra-intense OPCPA system pumped by OMEGA EP

•	 A sequence of noncollinear optical parametric amplifiers (NOPA’s) 
is seeded by white-light continuum generated in sapphire

–	 200 nm of spectral support (160-nm FWHM)
–	 compressible to 13 fs (temporal Strehl ≥ 0.7)
–	 low spatiotemporal coupling

•	 The first stage has been characterized using a NOPA-based  
cross-correlator

–	 dynamic range = 105 dB
–	 temporal resolution = 250 fs

Prepulse contrast > 105 dB up to –5 ps (detection limited, chirped pulse)



All-OPCPA systems pumped by Nd:glass lasers are an 
option for producing ultra-intense pulses (>1023 W/cm2)

E19187

•	 The front end must provide

–	 broadband, compressible pulses, centered at 910 nm
–	 high-quality, focusable beams
–	 high temporal contrast
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LLE’s front end consists of a chain of NOPA’s  
seeded by white-light continuum (WLC)

E19188

•	 Previous demonstrations used the idler from the first amplifier stage
–	 chirped collinear (RAL, UK)

–	 angularly dispersed (IAP, Russia)

•	 LLE’s white-light continuum is generated in sapphire*
–	 broadband (450 to 1020 nm)
–	 stable (<1.3% rms)
–	 focusable (spatial Strehl > 0.7)

–	 compressible (temporal Strehl > 0.7)

•	 WLC-based approach has advantages
–	 no ultra-broadband oscillator
–	 no need to precisely set the chirp of the pump pulse

–	 no residual angular dispersion to compensate

*Thanks to Prof. E. Riedle and Dr. C. Homann for their assistance



The first phase in demonstrating an optical parametric 
amplifier line (OPAL) has been completed

E19189a
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The next two phases are being designed and built
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The Phase 1 results show 200 nm of spectral support 
(160-nm FWHM), compressible to < 13 fs

E19190

•	 Measured spectrum and phase of 
NOPA1 after a two-prism compressor

•	 Compressed pulses to 1.07× the 
Fourier transform limit

•	 Temporal Strehl = 0.7

•	 Spectral support preserved by NOPA2 

2

–2

0

NOPA1 spectrum 
and phase*

NOPA1 pulse after
prism compressor

S
p

ec
tr

al
 p

h
as

e
(r

ad
)

–50 50–100

0.5

1.0

0.0
0 100

Time (fs)

In
te

n
si

ty
 (

ar
b

it
ra

ry
 u

n
it

s)S(~)
z(~)

Meas. (12.8 fs)
FTL (11.9 fs)

1.0

0.5

0.0
800 900

Wavelength (nm)

0.6-nJ pulses

180-nJ pulses

S
p

ec
tr

u
m

 
(a

rb
it

ra
ry

 u
n

it
s)

1000

NOPA2 spectrum

*Measured using SPIDER after double-pass prism compressor



To achieve high temporal contrast, noise from the  
fiber-based pump laser is reduced using nonlinear 
processes and filters

E19191

•	 White-light continuum (WLC) generation 
–	 threshold (1.3 nJ) means no continuum from satellite pulses or ASE

•	 Second-harmonic generation (SHG)
		  –  saturated, but still reduces the impact of pump noise on the NOPA 

•	 Noncollinear optical parametric amplification (NOPA)
–	 saturated gain (19 dB) in 250-fs/200-nm window
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A cross-correlator (CC) with 105 dB of dynamic range 
has been developed to characterize NOPA1

E19192

Degenerate OPA Cross Correlator–E. J. Divall and I. N. Ross (2004). 

Short pass
(<1000 nm)

Delay
stage

Idler 
 (1250 nm)

Pump (523 nm)

Signal (910 nm)

BBO
6 mm

Long pass filter
(>1000 nm)

Pump
(523 nm)

NOPA1 CC
WLC 3.8ºND

2 nJ

3 pJ to 0.6 nJ
4 nJ

NOPA-based CC



A cross-correlator (CC) with 105 dB of dynamic range 
has been developed to characterize NOPA1

E19192

•	 NOPA-based CC: sensitive (39-dB gain), broadband (150 nm), high resolution (250 fs)

•	 Background suppression: use RG1000 filters and measure idler component at  fp + fs

•	 Dynamic range: calibrated filters (50 dB), detector gain (40 dB), and lock in (20 dB)

Degenerate OPA Cross Correlator–E. J. Divall and I. N. Ross (2004). 
Lock-in-based Autocorrelators–A. Braun et al. (1995), P. F. Curley et al. (1995).
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The prepulse contrast of the uncompressed pulse  
up to –5 ps is better than 105 dB
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Postpulses from the CC pump produce artifacts  
that can be mistaken for NOPA prepulses
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All CC peaks before the main one are caused by pump 
postpulses and scale according to the small-pump limit

E19195

0

–20

–120 –80 –60–100 –40 –20

Delay (ps)

Reduced CC gain (17 dB) Main peak
Main peak

S
m

al
l s

ig
n

al
S

m
al

l p
u

m
p

C
ro

ss
-c

o
rr

el
at

io
n

 (
d

B
)

0

a b

c

a b

c d e f g
d

e

f g

h
h i j k

i
j

k

l l m

20 40 0.4 0.6 0.8 1.0

–40

–60

–80

–100

–120

0

–20

–10

P
ea

k 
va

lu
e 

o
f 

cr
o

ss
-c

o
rr

el
at

io
n

 s
ig

n
al

 (
d

B
)

–30

–40

–50

–60

–70

–80

–90

–100

m

 Ipump   (norm.)



An exponential tail starts 60 dB below the main peak

E19313

•	 Not a CC artifact (follows √Ip scaling)

•	 Time constant (1/e) = 29 ps

•	 Energy contrast (peak-to-tail) = 41 dB

•	 Property of WLC (i.e., not added by NOPA1), but 
its physical origin is not yet understood
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43 dB gain in the next two picosecond-pumped NOPA
stages will reduce the tail to a negligible level

E19314

•	 Estimated contrast after the next two stages produce 5-mJ pulses at 5 Hz

•	 Assumes 43 dB of gain in a 2-ps-wide Gaussian window
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A front end based on white-light generation has been 
demonstrated for ultra-intense OPCPA
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SummarySummary/Conclusions

•	 LLE is developing the technologies necessary for an  
ultra-intense OPCPA system pumped by OMEGA EP

•	 A sequence of noncollinear optical parametric amplifiers (NOPA’s) 
is seeded by white-light continuum generated in sapphire

–	 200 nm of spectral support (160-nm FWHM)
–	 compressible to 13 fs (temporal Strehl ≥ 0.7)
–	 low spatiotemporal coupling

•	 The first stage has been characterized using a NOPA-based  
cross-correlator

–	 dynamic range = 105 dB
–	 temporal resolution = 250 fs

Prepulse contrast > 105 dB up to –5 ps (detection limited, chirped pulse)
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Spatially resolved spectral interferometry was used  
to quantify the spatiotemporal properties of NOPA1

E18584d

, , , , ZZx y x yMEAS NOPA REF~ z ~ z ~ ~xU =^ ^ ^h h h

*	J. Jasapara and W. Rudolph, Opt. Lett. 24, 777 (1999).
	P. Bowlan et al., Opt. Express 14, 11892 (2006).
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Minimal residual higher-order spatiotemporal coupling 
was measured for optimum noncollinear alignment

E18588b

•	 Spatiotemporal Strehl at focus = Ipeak/(Ipeak, no coupling, flat phase)*
•	 Measured spatiotemporal Strehl = ~0.4 to 0.5

Spatiotemporal Strehl values as high as 0.8 could be achieved,  
in principle, with separate spatial and spectral compensation.

*Bromage et al. Opt. Lett. 35, 2251 (2010).



The structure in the tail is stable from scan to scan
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The tail depends on the energy of the pulse  
used to produce the WLC

E19200
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The WLC-seeded NOPA’s show good spectral stability
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The near-field and far-field profiles of NOPA2
satisfy the needs for Phase 2
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