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Background & Motivation

We report on a 1J class, 2.5 Hz OPCPA centered at 1057 nm with
greater than 35 nm bandwidth. This system seeds the Texas Petawatt
Laser, a 200 J, 150 fs OPCPA , Mixed Nd:glass system currently in
operation.

Optical Chirped Pulse Amplification (OPCPA) offers exciting new
possibilities for high intensity lasers.

High optical gain (10°) and broadband amplification (>35 nm) makes
OPCPA a good candidate for seeding high intensity petawatt lasers.

OPCPA’s broad bandwidth and ability to spectrally tailor pulses is
attractive for seeding energetic, Nd:glass based petawatt lasers.
This technique can pre-compensate for limited gain bandwidth and
gain narrowing which limits pulse compression in this architecture.

This approach enables Nd:glass based lasers to break the 400 fs
barrier and compress to around 150 fs.
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System Design & Technical Approach

Our system is composed of three amplifier stages. Each stage uses a
pair of walk off compensated crystals in a non-collinear, near
degenerate configuration with one degree of separation between
pump and seed.

These amplifiers are pumped at 300MW/cm2 by two frequency
doubled Nd:YAG lasers at 532 nm.

7 X7 mm and 10 X 10 mm BBO crystals are used in Stages | & II.
Stage Il with apertures > 20mm, uses YCOB, a newly developed
crystal.

YCOB is an extremely attractive solution for high average power and
large aperture OPCPA . It offers gain close to BBO with the scalability
of|KDP.

The first two stages are pumped by a commercial, 1.5 J, 8 ns laser.
The third stage is pumped by a custom laser specifically designed for
OPCPA. It delivers a 2.5 Hz, 4 J, 4 ns pulses that are spatially uniform
with user control of the pulseshape.

Parametric Amplified Spontaneous Emission (ASE) is problematic
and mitigated using tight spatial filters and wedged crystals.
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| Using OPCPA for spectral compensation enables Nd:glass based peteawatts.
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Conclusion

We have demonstrated a spectrally controlled, stable, high energy
OPCPA as a petawatt front end. We have demonstrated a 200 J
167 fs, 1.1 PW laser based on this front end.




