SOFIA iodine laser system as a driver for OPCPA
(Solid-state Oscillator Followed by lodine Amplifiers)
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Introduction OPO automatic stabilization system

lodine photodissociation lasers are characterized by a low saturation energy and a high
amplification. They are mainly operated in a single shot regime. The population
inversion is achieved by the photodissociation of a fluorinated iodide, e.g. C.,F.I, by UV

light of 270 nm (Xe flashlamps).

Owing to very narrow spectral lines of both
iodine amplifiers and the OPO idler(~10 pm),
their wavelenghts must be thoroughly matched.
Moreover, the spatial position of the idler has to
be fixed. Therefore an automatic stabilization
system controlled by PC via a hotiodine cell was

High power iodine lasers are supposed to be excellent OPCPA drivers due to a high
cross-section homogeneity and a smooth temporal profile [1]. On the other side, the produced [2] with a precision better than 1 pm.
OPCPAtechnique presents a unique possibility for the iodine laser to transferitsenergy R |  umcomn Subsequently, the spatial position of the idler
to an ultrashort high-intensity pulse, as its gain bandwidth is very narrow (~10 pm) and Fig. 5. The automatic stabilization of beam has been automatically fixed via two

therefore the classical CPA cannot be used. wavelength and spatial quadcells [3],see fig. 5.
position of OPO idler beam
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SOFIA laser system (a driver) Signal beam for OPCPA
SOFIA has been built up as a test iodine OPCPA driver aiming to convert 20J@1ns to The seeding ultrashort signal beam is produced by a Ti:sapphire oscilator (12 fs, 75MHz,
1J@30fs. Its peculiarity is the use of a narrow band Optical Parametric Oscillator 10 nJ, Femtolaser). The pulse is stretched in a home made pulse stretcher (see fig. 6,7)
(MOPO-HF, Spectra Physics) as a solid-state oscillator that is followed by gaseous from 12 fs to 300 ps. The stretcher is based on a single diffraction grating and an Offner
lodine laser amplifiers, see fig. 1,2,3.The OPO idler is tuned to match the iodine line telescope. Fig. 7 shows the spectral transmission of the stretcher.

1315 nm. Using the solid-state oscillator enables a precise synchronization of this driver

with the signal beam source, i.e. an ultrashort -pulse Ti:sapphire laser, see fig. 4. _ — 1.0
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HLI amplifier pulse stretcher

Double-pass compressor (fig. 8) consists of a pair of gratings and a roof mirror. Its
power transmission is > 50%. Compressor design allows compression to sub-20 fs
pulse width (see experimental autocorrelation in fig. 9).
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Fig. 1. Scheme of SOFIA laser system and its integration into the OPCPA system. The final goal is a Fig. 8. View of a compressor for a Fig. 9. Interferometric correlation and iteratively
beam of 1 J compressed to 30 fs. A three-stage OPA will substitute the present two-stage one. o beam of dm size. retrieved [4] temporal intensity and

phase of the compressed pulse.
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Present state
- 15-25J @ 1315 nm 0.8-2.5 ns (pulse width tuning possible)
- 4 J @ 438 nm (third harmonic)

- Automatic stabilization of the front-end beam. The OPO has a day-long stable
output without an operator action
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External synchronization of OPQO controlled by Ti:sapphire pulses accomplished

Fig. 2. SOFIA front-end (OPO and Pockels cells). Fig. 3. View of SOFIA hall. Full scale pumped OPCPA experiments are about to restart
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Fig. 4. Scheme of synchronization of OPO and the single shot iodine

Ti:sapphire laser lamps
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