

Proposal of ultra-high-power beams at the kilojoule iodine laser PALS

<u>Ondřej Novák</u>^{*a}, Martin Divoký^a, Petr Böhm^a, Martin Smrž^a, Radek Sedlář^a Hana Turčičová^b, Petr Straka^b

^aDepartment of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, CTU Prague, Břehová 2, 110 00 Prague 1, Czech Republic ^bDepartment of Nonlinear Optics, Institute of Physics, AS of CR, Na Slovance 2, 182 21 Prague 8, Czech Republic

*novakon@fzu.cz

1. Introduction

The kilojoule terawatt 1.3-µm iodine laser PALS is occupied by users. To extend a scope of experiments, an implementation of an ultra-highpower beam was proposed. Chirped pulses of an 800-nm Ti:Sapphire oscillator could be parametrically amplified (OPCPA) by a third harmonic (TH) of the laser PALS [1]. Here, new 100 TW and 1 PW beams have been suggested in detail.

Fig. 1 The PALS laser hall

Fig. 2 Modeled scheme of the 100 TW and 1.4 PW beams at the PALS laboratory with a single front-end. The 100 TW beam can be supplemented by the kJ PALS beam (dashed, gray). The signal output parameters are in the table.

2. Model of parametric amplification and pulse compression

- · Gaussian pump and signal pulses, a monochromatic pump
- Top-hat beams, equal pump and signal diameters in amplifiers, transmission between the amplifiers of 80%
- Front-end preamplifiers: a gain up to 1000, a repetition rate above 1 Hz
- Power amplifiers: a conversion efficiency around 20%
- Image relaying between the amplifiers by telescopes
- Pulse compressor with metal coated gratings with 1200 l/mm, transmission of 50%, and a full bandwidth of 200 nm
- · Focus by f/2 optics, 2x diffraction limited

3. Results

Both the 100 TW and 1 PW beams having a single front-end are placed in the current PALS laser hall. A repetition rate of the ultra-high-power beams is a pulse per 25 minutes. A deformable mirror at the output of the pulse compressor improves a wavefront.

Front-end preamplifiers are pumped by a second harmonic (SH) of a Nd:YAG laser with a repetition rate of 10 Hz. A Pockels cell (PC) behind the Nd:YAG laser cuts the pump pulse to reduce parametric fluorescence.

100 TW beam with a rest of the kilojoule terawatt PALS beam (a wavelength of 1.3 μ m or its harmonics) enables pump-probe experiments.

1.4 PW beam utilizes all energy of the PALS iodine laser in the power amplifiers.

Fig. 3 (a) Relative phase, initial and amplified spectra of the 100 TW and 1 PW beams (bandwidths of 95 nm and ~60 nm FWHM, respectively). (b) A ray-traced cylindrical pulse compressor for both the 100 TW and 1 PW beams.

Fig. 4 The proposed layout of the ultra-high-power beams in the current PALS laboratory (41 m x 15.5 m). Beamlines: iodine laser (gray), signal (red), pumps of the preamplifiers (green) and the power amplifiers (blue); rectangles: image relaying telescopes (framed), TH generators (dark blue), KDP power amplifiers (brown), and pulse compressor (yellow); shading: front-end (light green) and stage (pink). The PALS laser, the four front-end optical tables, and the pulse compressor are on the ground floor. The periscopes (P) change a beam elevation. The movable mirrors with the arrows switch between the 100 TW (dashed) and 1 PW beamlines. Sizes of the elements are enlarged for a visibility.

4. Summary

The new 100 TW and 1 PW beams in the PALS laser hall were designed using PALS laser parameters, including the new front-end, the image relaying between the amplifiers, and the pulse compressor. The ultra-high-power beams will increase the available laser power in the PALS facility to the petawatt level and the intensity up to 10²² W/cm². The new beams will provide the users a new class of experiments such as relativistic particle acceleration, relativistic optics, laboratory astrophysics, and fast ignition schemes.

5. Acknowledgements and Reference

The authors thanks to J. Skála for helpful discussions.

The work has been supported by the European Committee (6. FW , LASERLAB-EUROPE RII3-CT-2003-506350) and the Ministry of Education, Youth and Sports of the Czech Republic (LN00A100).

[1] Matoušek, P., et al., Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV, IEEE Journal of Quantum Electronics, 36 158 (2000)