Recent Progress of Ceramic Laser for Ultrashort Pulse Lasers

1. High power pumping source

2. High efficiency 50fs pulse generation

Ken-ichi Ueda Inst. Laser Science, Univ. Electro-Communications, Tokyo, Japan ueda@ils.uec.ac.jp

ICUIL 2008, Oct. 31, Tongli, China

Historical Background of Ceramics

-Origin of "Ceramics" : Greek "Keramos"

- Clay sintering

94000y8a00gBC <900°C Low quality clay Inhomogeneous

薄胎 (清代)

Traditional Ceramics 1300 – 1500 °C High quality clay Special harmony 景徳鎮 Jingdezhen "Ceramics Metropolis"

Modern Ceramics Late 20 century **Synthesized particles** Homogeneous

Translucent Ceramics → Transparent Ceramics

Ceramic lasers: scalable, spectral control For IFE driver, industrial femto-second laser

Konoshima chemical, ILS/UEC

Crystal or Glass or Ceramics?

Ceramic laser: Glass-like fabricated crystal

Homogeneous line

Inhomogeneous line

	<i>Nd:YAG</i> crystal		<i>Nd:YAG</i> <i>ceramics</i>		<i>Nd:phosphate glass</i>	
σ (cm ²)	0	30×10^{-20}	0	30×10^{-20}	×	4×10 ⁻²⁰
τ (μs)	0	260	0	260	0	300
στ product (cm²s)	0	$7.8 imes 10^{-23}$	0	7.8×10^{-23}	×	1.2×10^{-23}
K (W/m K)	0	12-13	0	12-13	×	0.78
α (1/K)	0	7.8×10^{-6}	0	7.8×10^{-6}	×	7.6×10^{-6}
Fracture limit (MPa)	0	1.8	Ô	5.2	×	
Thermal shock (W/m)	0	790	0	(2400)	×	140
Scalability (40 cm x 1 m)	×	No	0	OK	0	Easy
Mass production	X	No	0	Possible	0	Easy
Possible cost	×	High	0	Medium	0	Low

Recent Progress of Ceramic Lasers

Publication on Ceramic Lasers

Synthesis of Transparent YAG Ceramics

Non-Reactive sintering

Reactive sintering

Green body before sintering

Non-reactive sintering Konoshima Ceramics

Traditional reactive sintering

Highest quality Scaling is good Real commercial material YAG, RE sesquioxide, disordered materials

Ceramics bonding

White ceramics by sintering at 1400°C

Optical polish ($<\lambda/10$)

Sintering at 1700°C

Ceramic lasers demonstrate higher efficiency. (2004)

High power Nd:YAG ceramic laser reached the same level or even higher in efficiency with Nd:YAG single crystal laser

Scattering <u>vs.</u> λ

G. Quarles: Paper 5707-19-Photonics West 2005-January 25, 2005

Correlation between Optical Scattering and Acoustic Thickness of Grain Boundary

Systematic Studies on Ceramic YAG in US Ceramics for Next Generation Tactical Laser Systems, Contract# N66001-00-C-6008 : G. Qaurles et al

Motivation

- Unbiased Comparison of VLOC Single Crystal YAG with Konoshima Ceramic YAG
- Development of Database for Hig Laser Development Engineers
- Development of Next-Generation Systems with Ceramics

Higher Power Solid State Lasers

G. Quarles: Paper 5707-19-Photonics West 2005-January 25, 2005

"Electric Lasers" in US toward >100kW use our ceramic YAG

1. Northrop Grumman: End-pumped Slab: Yb:YAG

2. Textron: Zigzag Thin Slab Laser: Nd:YAG

3.LLNL: Thermo Capacity Laser; Nd:Sm:YAG

Solution of high rep rate high power pump source

TEXTRON 100kW Solid State Lasers

Moving from 1 kW to 5 kW to 15kW to 100 kW Solid State Lasers Textron Systems engineers are developing tomorrow's precision-strike weapons today

TEXTRON Systems

Northrop-Grumman Joint High Powered Solid State Laser

In Phase 3 of the US\$56.68 million JHPSSL program, eight 15kW laser chains of four modules each will combine to achieve a total power of 100kW.

The laser chain was tested on December 20 last year, and reached 15.3kW - 2.6kW ahead of expectations. Vertical beam quality was measured at 1.58x diffraction limit, surpassing the 2.0 target; turn-on time was 0.8 seconds, below the 1.0 second target; LC1's run time was more than 300 seconds, far beyond the target of 200 seconds; and the Electro-Optical Efficiency was 19.5%.

Yb-doped Ceramics for ultra-broadband and ultra-short pulse generation

 Yb:YAG, Yb:Y₂O₃, Yb:Lu₂O₃, Yb:Sc₂O₃ high concentration 10%-20% doping
 Fluoride ceramics: Yb:CaF₂ and Yb:SrF₂ long lived and broadband
 Disordered ceramics: Yb-doped Lumicera Nd:{Gd_{3-x}Y_x}Sc₂{Al_{3-x}Ga_x}O₁₂ (0<x<3)

Big issues: High doping, high pumping What is the possible pumping density? What is the intrinsic limit of high density pumping?

International collaboration with Huber's lab. In Germany.

Problem of the Yb:YAG Thin-Disk Laser

In the Thin-Disk Laser set-up, laser operation is not possible for Yb:YAG samples with a doping concentration higher than 15%.¹⁾

Heat and gain measurements show that:

- → highly doped Yb:YAG crystals suffer decay processes that generate heat,
 - \rightarrow these processes are excitation density dependent,
 - \rightarrow these processes are temperature dependent.

¹⁾ M. Larionov et al. "*Nonlinear Decay of Excited State in Yb:YAG*", OSA Trends in Optics and Photonics, Advanced Solid-State Photonics, Proceedings Vol **98**, 18-23 (2005).

Better performance in high doping Yb:YAG ceramics

16.5% Yb:YAG single crystal

Efficient Yb:YAG microchip lasers at High Pump and High Doping even at Room Temperature (J. Dong)

Nonlinear and gain control by combined ceramics

Broader emission spectrum and absorption spectrum

Mode-matching factor is about 40%

The distance of prism pair was about 40 cm

Property of SESAM $A_0=1\% t_1=10 \text{ ps}$ $F_{\text{sat,A}}=30 \text{ mJ/cm}^2$ $F_{\text{damage}}\sim 1 \text{ mJ/cm}^2$

Improvement of beam profile

The measured laser mode of the leaking beam at the point X

In the Mode-locked operation

 $1800\times 2050 \mu m$

 $1830 \times 2940 \mu m$

53 fs pulse duration with the average power of 1 W

86 MHz, Opt-opt efficiency is about 12.5%

The pulse durations were independent on saturation depth of the SESAM

Comparison of Sub-100 fs Yb-doped lasers

Yb-doped Material	P _{out} (mW)	∆t (fs)	P _{pump} (W)	method	Pump source	Year	reference
KYW	120	71	3.2	KLM	two LD	2001	H. Liu <i>et al.</i> Opt.Lett. 26 ,1723
BOYS	80	69	3.6	SESAM	two LD	2002	F. Druon <i>et al.</i> Opt. Lett. 27 , 197
SYS	156	70	4	SESAM	LD**	2004	F. Druon <i>et al.</i> Opt. Express 12 , 5005
YVO ₄	54	61	0.4*	KLM	FCLD	2005	A. A. Lagatsky <i>et al.</i> Opt. Lett. 30 , 3234
CaGdAlO ₄	520	68	15	SESAM	FCLD	2007	J. Boudeile <i>et al.</i> Opt. Lett. 32 ,1962
Sc ₂ O ₃	850	92	4.5	KLM	LD	2007	ILS/UEC ceramics
Sc ₂ O ₃	415	70	5	KLM	FCLD	2007	ILS/UEC ceramics
Lu ₂ O ₃	320	65	5	KLM	FCLD	2007	ILS/UEC ceramics
Sc ₂ O ₃ / Y ₂ O ₃	380	56	5	KLM	FCLD	2007	ILS/UEC ceramics
Sc ₂ O ₃ / Y ₂ O ₃	1000	53	8	KLM	LD	2008	ILS/UEC ceramics
Sc ₂ O ₃ /	1500	66	8	KLM	LD	2008	ILS/UEC ceramics
The shortest and highest pulse operation for Yb-doped solid-state laser without external element(<i>ex.</i> dispersion compensation)ever reported also was achieved.							

LD-pumped sub 100 fs solid state lasers

Ceramic Lasers: Solid State Laser in 21st century

- Scaling to large aperture active elements
 Large and thin (1m x 1m) : effectively no limit
 Industrial lasers, Fusion drivers, and so on
 Glass-like fabricated polycrystalline material
- New materials
- Spectral control, combined activators
- Gain uniformity
- Wave guide and gain profile control
- Multi-functional elements
- Low cost, mass production

Engineering Ceramics

New Laser

Asian Core Program (Research and Education) by JSPS

Next Generation Ultra-High Intensity Solid State Laser for High Field Sciences

Target: High field science Relativistic plasma Laser accelerator Young scientists using >PW peak power laser

New laser materials

New Ceramic Laser

China, Korea, India, Japan Asian network for research and education 1000 Miles TNDTAN OCEAN

Collaborators and Acknowledgement

Institute for Laser Science, UEC M. Tokurakawa, A. Shirakawa, J-F Bisson, J. Dong, K. Takaichi,

Konoshima Chemical Co. Ltd H. Yagi, T. Yanagitani

Institute of Laser Engieering/Osaka Univ. J. Kawanaka

Institute of Crystallography, RAS A. Kaminskii and Joint Open Laboratory for Laser Crystals

Institute of Laser Physics, Univ. Hamburg S. Fredrich, G. Huber

景徳鎮 Jingdezhen "Ceramics Metropolis" of China

Transluscent Ceramics in Jingdezhen

ASE control by Photonic Band Gap

Photonic Bandgap Fiber broke the gain limit by full control of ASE and parasitic lasing.

Proposal on Temperature Tuned IFE Driver Yb:YAG at low temperature (Kawanaka & Bisson& Ueda) WS on Critical Issues on Solid State Lasers, APLS 2003

Thermal lens effect of sapphire mirror at 20K was measured to be at least 10⁻⁴ smaller than room temperature in the LCGT program (GW telescope)

Thermal lens

 $ds \propto \frac{lpha eta}{\kappa}$

 $\boldsymbol{\alpha}$: absorption coeff.

 β : thermal conductivity

 κ : thermal expansion

Measurement for LCGT mirror

	Fused silica (300k)	Sapphire (300K)	Sapphire (20K)
lpha [ppm/cm]	2 - 20	40 - 100	90
β [W/m/K]	1.4	46	4.3 x 10 ³
к [K ⁻¹]	1.4 x 10 ⁻⁵	1.3 x 10 ⁻⁵	< 9 x 10 ⁻⁸
αβ/κ [W ⁻¹] x 10 ⁻⁹	2 - 20	1 - 3	< 2 x 10 ⁻⁴

Spectral Control 100% inhomogeneous broadening

Combined Active Media for Broadband Lasers are possible?

ILS/UEC

Absorption

Laser materials are the emission converter.

Emission