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Formulation of the problem


hot electrons


cold ions


At t = 0 the electron component of a finite plasma mass 
is heated to a uniform temperature Te(r, 0) = Te0.

Hot electrons expand and create an ambipolar electric 
field E(r, t), which drags the cold ions.


(1)There are no collisions between electrons

 and ions.

(2)At all times, the electron temperature is very 
quickly leveled off across the plasma volume:

 Te(r, t) = Te(t).


Assumptions
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Governing equations


where n stands for the geometrical index:
 ν = 1, planar
ν = 2, cylindrical
ν = 3, spherical
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In the framework of two fluid approximation, expansion of the 
considered plasma is governed by the following system of equations,
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Similarity ansatz

The key assumption is that the velocity, v(r, t), is linear in radius. This is 
always correct for the asymptotic stage of free expansion of a finite mass.


 ve(r, t) = vi(r, t) = Rξ

 

ξ =
r
R(t)

, R ≡ dR
dt

ne(r, t) = ne0
R0
R(t)


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Zni(r, t) = ni0
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
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ν

Ni(ξ), Ni(0) ≠ 1

(6)


(7)


(8)


(9)


Ni
Ne

ξf

Cold ions preserve a sharp edge at x = xf 
(still unknown).


Functions, vi and Ni,  are then defined 
only for  
0 ≤ ξ ≤ ξf

●


●
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The self-similar solution produces various plasma profiles
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The analytical model excellently reproduces the experimental 

results on ion kinetic energy spectrum (planar geometry)
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The analytical model excellently reproduces the experimental 

results on ion kinetic energy spectrum (spherical geometry)


Phys. Plasmas 12 (2005) 062706
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Maximum ion kinetic energy
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Generation of quasimonoenergetic spectra


 - with homogeneously distributed impurity ions -


It is well known that quasimonoenergetic ions can be produced 

using planar targets coated with a thin foil made of light ions on the 
rear side.


In spherical case, however, quasimonoenergetic ions can be 
produced by doping impurity ions homogeneously in the spherical 
target.


We here demonstrate the generation of the quasimonoenergetic 
spectrum and explain it by using the self-similar solution.     
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Ru0 = 2.15nm

nu0 =10
23cm−3

α = 4
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Ep,max
Ei,max

=
mpvp,max

2

mivi,max
2 =

Zp
Zi

Generation of quasi-monoenergetic ion spectrum
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Generation of quasi-monoenergetic ion spectrum


drp
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Conclusion�
•  The self-similar solution has been applied to expansion problem of a 

droplet or a nanocluster.

•  Excellent agreement has been found between the theory and the 

simulation on such key physical quantities as the maximum ion energy 
and the energy spectrum.


•  The self-similar solutions has predicted generation of quasi-
monoenergetic spectrum by homogeneously doping impurity ions in a 
spherical droplet target.


•  This prediction has been confirmed by N-body particle simulations.

•  It is concluded that the origin of the monoenergetic spectrum is 

attributed to the spherical geometry.  �
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