High-Dynamic-Range Single-Shot Cross-Correlator Using a Pulse Replicator

C. Dorrer, J. Bromage, and J. D. Zuegel University of Rochester Laboratory for Laser Energetics International Conference on Ultrahigh Intensity Lasers Shanghai-Tongli, China 27–31 October 2008 Summary

A single-shot, high-dynamic-range, cross-correlator with a long temporal range has been developed

- The temporal contrast of optical pulses must be controlled and measured accurately because of its impact on laser-target interaction
- Single-shot contrast measurements are required because
 - the prepulse intensity varies significantly from shot to shot (e.g., intensity fluctuations caused by amplified spontaneous emission)
 - high-energy laser systems have a low repetition rate that precludes multishot scanning diagnostics
- A single-shot, high-dynamic-range, cross-correlator has been developed
 - sequence of sampling pulses generated by an optical pulse replicator
 - sensitivity adjusted in different temporal ranges
 - dynamic range of 60 dB over a 220-ps temporal range

The temporal contrast of short laser pulses must be controlled and measured for laser-target experiments

- Light arriving before the main pulse can create a pre-plasma
 - at an intensity $>10^{12}$ W/cm² in a short pulse
 - at an intensity $\sim 10^8 \text{ W/cm}^2$ maintained over a long time

The temporal contrast is an important parameter for laser-target interaction and must be measured accurately.

The short-term temporal contrast is typically measured with a scanning third-order cross-correlator

- Correlation signal measured as a function of the delay between the pulse under test and a frequency-doubled pulse.
- The computer continuously adjusts the input attenuation and detection gain.
- This is fundamentally a multishot acquisition system (~1000 shots).

A different approach is needed for single-shot temporal-contrast measurements.

An optical pulse replicator generates a sequence of sampling pulses

- Sequence of sampling pulses that are spatially separated and temporally delayed effectively maps time onto space
- Demonstrated optical pulse replicator with commercial 2-in. mirrors
 - 36 sampling pulses
 - 6-ps spacing between sampling pulses

A single-shot, third-order cross-correlator based on an optical pulse replicator has been developed

- 1 ω pulse intensity is obtained by nonlinear interaction with a sequence of 2 ω sampling pulses generated by a pulse replicator.
- Sensitivity adjusted for different temporal ranges using neutral density filters after the pulse replicator.
- Background-free detection at 3ω for high-dynamic-range measurements.

The dynamic range can be extended using neutral density filters after the pulse replicator

- Detection at 3*w* using a simple video camera and 8-bit frame grabber
- The sensitivity for different temporal ranges can be adjusted using neutral density (ND) filters on the corresponding sampling pulses

Dynamic range ~30 dB thanks to signal-beam spreading on multiple pixels

Two 30-dB detection ranges separated by 30 dB

The single-shot cross-correlator measures a signal longer than 200 ps

- A Fabry–Perot etalon in the 1ω beam path generates a train of pulses separated by 40 ps.
- The temporal range of the cross-correlator is larger than 200 ps.
- A cross-correlator with a 500-ps range is under construction.

A temporal range of hundreds of picoseconds can be covered in a single shot.

Amplified spontaneous emission leads to large fluctuations of the intensity before the main pulse

UR 🔌

- 10,000 successive single-shot measurements of the 8-ps pulse from a diode-pumped regenerative amplifier
 - average ASE intensity approximately 45 dB below the peak intensity
 - variations of ASE intensity ~30 dB from shot to shot

Single-shot intensity measurements with >60 dB of dynamic range gives an unprecedented description of the pulse.

A single-shot cross-correlator is currently being characterized for OMEGA EP

- A cross-correlator prototype based on a pulse replicator is currently being characterized for OMEGA EP
 - temporal range of 510 ps (85 replicas, 6-ps delay)
 - dynamic range of single acquisition (without ND filter) of ~45 dB using a 16-bit CCD camera

Summary/Conclusions

A single-shot, high-dynamic-range, cross-correlator with a long temporal range has been developed

• The temporal contrast of optical pulses must be controlled and measured accurately because of its impact on laser-target interaction

- Single-shot contrast measurements are required because
 - the prepulse intensity varies significantly from shot to shot (e.g., intensity fluctuations caused by amplified spontaneous emission)
 - high-energy laser systems have a low repetition rate that precludes multishot scanning diagnostics
- A single-shot, high-dynamic-range, cross-correlator has been developed
 - sequence of sampling pulses generated by an optical pulse replicator
 - sensitivity adjusted in different temporal ranges
 - dynamic range of 60 dB over a 220-ps temporal range

Amplified spontaneous emission leads to large fluctuations of the intensity before the main pulse

LL

We demonstrate a single-shot cross-correlator with a 60 dB dynamic range

Single-shot measurements reveal the significant prepulse intensity fluctuations due to ASE.

Statistical properties of the fluorescence can be obtained using the single-shot cross-correlator

UR 🔌

- 10,000 single-shot measurements of the prepulse ASE intensity have been obtained by moving the sampling window ahead of the pulse under test.
- Statistical properties of the fluorescence must be understood to quantify its effect on the temporal contrast.

The probability density function of the measured ASE intensity agrees with theoretical predictions

 The probability density function (PDF) of the intensity of an incoherent process is*

$$\mathbf{P}(\mathbf{I}) = \frac{1}{\langle \mathbf{I} \rangle} \exp\left(-\frac{\mathbf{I}}{\langle \mathbf{I} \rangle}\right)$$

The agreement of the measured PDF with the theoretical PDF is very good.

The coherence of light at different times can be statistically evaluated

UR