A Focal-Spot Diagnostic for On-Shot Characterization of OMEGA EP

J. Bromage, S.-W. Bahk, D. Irwin, J. Kwiatkowski, A. Pruyne, M. Millecchia, M. Moore, and J. D. Zuegel University of Rochester Laboratory for Laser Energetics

International Conference on Ultrahigh Intensity Lasers Shanghai-Tongli, China 27–31 October 2008 Summary

A focal-spot diagnostic for on-shot characterization has been successfully deployed on OMEGA EP

- Focal-spot diagnostics (FSD's) are critical for target experiments and system optimization.
- Direct measurement at full energy is impractical.
- FSD's have been deployed on both of OMEGA EP's short-pulse beamlines
 - based on calibrated measurements of sample beam near field
 - use high-resolution wavefront sensors (133 \times 133)
 - focal profile may be calculated at any plane relevant to the target experiment
- The FSD was qualified using a TIM-based focal-spot microscope (FSM) for direct measurement at low energy.

A focal-spot measurement is presented for a 290-J, short-pulse target shot.

FSD calculates the on-target irradiance from near-field measurements of the on-shot fluence and wavefront

A high-resolution Shack–Hartmann wavefront sensor measures the sample beam feeding the laser diagnostics

- Not sensitive to chromatic effects such as angular dispersion from compressor misalignment.
- Such effects, once separately quantified during alignment, can be included in the post-shot calculation.*

^{*}S.-W. Bahk et al., Appl. Opt. <u>47</u>, 4589 (2008).

The FSD is calibrated using two cw beams to probe the difference between main and sample beam paths

- Measure wavefront from PAD source: W₁
- Measure wavefront from diagnostics source:
- Obtain transfer wavefront from difference: ΔW

Transfer wavefront: $\Delta W = W_1 - W_2$

 W_2

A focal-spot microscope (FSM) for direct measurement in the target chamber was used to qualify FSD

UR 🔌

The FSD and FSM measurements agree well on both linear and logarithmic scales

The difference in high contrast structure is likely due to the point-spread function of the FSM

Encircled energy curves for FSD and FSM are in good agreement

E17203

FSD and FSM agree for highly aberrated spots, created by adjusting the deformable mirror

E16891

Example of FSD data from 11-ps shot that produced 290 J on target

One advantage of this approach is that the focal spot at other surfaces of interest can also be calculated

Summary/Conclusions

A focal-spot diagnostic for on-shot characterization has been successfully deployed on OMEGA EP

- Focal-spot diagnostics (FSD's) are critical for target experiments and system optimization.
- Direct measurement at full energy is impractical.
- FSD's have been deployed on both of OMEGA EP's short-pulse beamlines
 - based on calibrated measurements of sample beam near field
 - use high-resolution wavefront sensors (133 \times 133)
 - focal profile may be calculated at any plane relevant to the target experiment
- The FSD was qualified using a TIM-based focal-spot microscope (FSM) for direct measurement at low energy.

A focal-spot measurement is presented for a 290-J, short-pulse target shot.

Improving the focal spot is an iterative process...

- We have an unmatched capability for characterizing the on-shot focal spot in the LLE focal-spot diagnostic (FSD)
- We have to date employed this capability on fewer than 64 target shots

UR

- we are very early in the learning curve
- Using the FSD, we are actively investigating improving the large-scalelength, base-beamline wavefront to reduce the required deformablemirror correction
- OMEGA EP system time has been allocated in FY09 for further efforts to improve the focal spot

Our initial efforts have produced focal-spot improvement.

Analysis shows the FSD wavefront sensor has a spatial resolution (133 \times 133) suitable for OMEGA EP

Simulations based on OMEGA EP data show that lower spatial-resolution wavefront measurements lead to significant errors in encircled energy.