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Worldwide high irradiance facilities show a trend 
toward higher repetition rate and higher intensity

We will use our 10 Hz feedback to create focused irradiance up to 1023 W/cm2
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Mercury has operated above 50 Joules for over 
0.3 million shots at 10 shots per second

Mercury shot histogram of consecutive 0.5 - 2 hr operations
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The advanced technologies on Mercury can be 
applied to power scaling of Ti:sapphire systems

• Image relayed, angular multiplexed architecture
• High speed helium gas cooling (scalable aperture)
• MRF correction of wavefront
• High average power edge cladding
• Adaptive optics 
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The  Mercury 
diode-pumped 

solid-state laser

Mercury pumped 
10 Hz Ti:sapphire 

petawatt

Compressor, E23, and 
particle generation

This high average power femto-petawatt has two 
distinct goals: focused irradiance and repetition rate

We will use Mercury to 
pump a 10 Hz petawatt
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15 J Petawatt capability requires 90 Joule 
1w output of the Mercury pump-laser

Expected energy on target is 15.2 J  + 3.6 J / - 5.8 J (rms uncertainties)
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10 Hz operation enables real time feedback for 
dispersive and spatial control of petawatt pulses

Feedback beam quality, Φ(x,y) correction

Feedback pulseshape, Φ(ω) correction
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An end to end energetics model indicates we will 
maintain sufficient bandwidth to compress to 13 fs

Spectral phase correction will be accomplished using a combination of the 
dispersion compensator, static correctors and a Dazzler
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Our adaptive optics system will correct the low 
order wavefront aberration

Magneto Rheological Finishing (MRF) or deterministic polishing will be used 
to correct for high order abberations in the Ti:sapphire and integrated system 

• Peak to valley, 2.14 waves
• RMS, 0.36 waves
• Ti:sapphire static MRF 

corrected
• Thermal wavefront 11 waves of 

power, cavity corrected

Induced static wavefront due to 
the power amplifier

Actuator 
Configuration

• Large single 
actuator corrects 
power (20 waves)

• 30 small 
actuators (5 
waves stroke)

Bi-Morph 
Deformable Mirror

• Paired with 10 Hz 
Phasics 
wavefront sensor

• Tested in 
Mercury
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An off axis parabola with a NA = 0.7 (F# ~ 0.5) 
could focus the output to nearly 4 x 1023 W/cm2

• The optic is manufacturable 
using conventional 
techniques

• The surface deviation from 
a sphere is < 15 mm
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The thermal model for the gas-cooled amplifier in 
the Mercury laser has been benchmarked

The benchmarked model enables predictive capability for advanced designs
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Vacuum chamber surrounding 
amplifier head

Gas-cooled amplifier head 
design based on Mercury

Relay imaging used to 
minimize wavefront 

distortions and amplitude 
modulation

The helium gas-cooled Ti:Sapphire amplifier head 
is embedded in a 4-pass image-relay cavity

The scalable average power and high beam quality capabilities of this design 
are new contributions to the field
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The thermally induced wavefront distortion in the 
Ti:sapphire will be almost entirely power (focus)

Power correction can be achieved by adjusting the beam transport optics or 
the deformable mirror

Thermally induced wavefront 
distortion of the Ti:sapphire
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distribution for 70 J pump energy



510 X 600 mm 
Gratings

510 X 600 mm 
Gratings

300 X 380 mm
Roof mirrors

300 X 380 mm
Roof mirrors

Compressor grating
in 3-axis mount

Compressor grating
in 3-axis mount

The gold gratings are fabricated with a new gold-on-glass technique 
with ULE substrates to limit thermal effects in the compressor
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532 nm pump lasers532 nm pump lasers

Beam transport from MercuryBeam transport from Mercury

10 fs oscillator and pump lasers installed, stretcher aligned, regenerative 
amplifier in process
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The 10 Hz Femto-Petawatt Laser will access a 
new high-field physics regime

The laser will provide 150 W (36000 PW shots/hr) which can generate a flux of 
X-rays, electrons, protons, and neutrons for high intensity applications

3 ω

3 ω
E23 1ω
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