Status of the E23 Project: A High Average Power Femto-Petawatt Laser for High Intensity Applications

Presentation to International Conference on Ultrahigh Intensity Lasers (ICUIL) October 27-31, Shanghai-Tongli, China

Andy Bayramian Photon Science and Applications, NIF & Photon Science Directorate, Lawrence Livermore National Laboratory Livermore, CA

October 30, 2008

Worldwide petawatt laser sources are typically low repetition rate (< 0.1 Hz) for basic science study

Japan

Austin

These sources achieve focused irradiance of ~ 10²¹ W/cm²

Antarctica

London France

NIF-1008-15526 22AB/bc

Worldwide high irradiance facilities show a trend toward higher repetition rate and higher intensity

The Mercury laser is a 10Hz scaled high average power laser driver for inertial fusion energy

	Goals	Status
Energy (J) (@ 1ω)	100	65
Efficiency (%)	10	6.5
PRF (Hz)	10	10
Pulse length (ns)	3-15	10-20
Frequency conversion	0.52	0.52
Bandwidth (GHz)	>150	In Progress
Beam quality (xDL)	5	4

Mercury has operated above 50 Joules for over 0.3 million shots at 10 shots per second

The advanced technologies on Mercury can be applied to power scaling of Ti:sapphire systems

Growth of YCOB enabled straightforward implementation of high average power second harmonic generation

Conversion up to 317 W average power (31.7 J/shot) at 523 nm achieved

15 J Petawatt capability requires 90 Joule 1w output of the Mercury pump-laser

	Efficiency			Energy (J)				
Loss Factor	Low value	Mid value	High value	Low value	Mid value	High value		
Parabolic reflector	0.95	0.97	0.98	9.4	15.2	18.8		
Compressor	0.6	0.71	0.78	9.7	15.7	19.4		
Chirped Pulse Transport	0.95	0.96	0.97	14.4	22.0	26.7		
Energy Extraction	0.75	0.8	0.85	15.0	23.0	27.9		
Energy Storage	0.4	0.55	0.6	19.0	28.8	34.7		
Absorbed Pump Energy	0.92	0.93	0.94	41.6	52.3	61.9		
2ω Transport	0.85	0.93	0.95	44.7	56.2	66.5		
Harmonic Conversion	0.6	0.7	0.8	49.3	60.5	71.5		
1ω transport	0.92	0.96	0.98	76.1	86.4	96.2		
Mercury 1ω output			80	90	100			
Expected energy on target is 15.2 J + 3.6 J / - 5.8 J (rms uncertainties)								

10 Hz operation enables real time feedback for dispersive and spatial control of petawatt pulses

CIENC

An end to end energetics model indicates we will maintain sufficient bandwidth to compress to 13 fs

Spectral phase correction will be accomplished using a combination of the dispersion compensator, static correctors and a Dazzler

Our adaptive optics system will correct the low order wavefront aberration

Magneto Rheological Finishing (MRF) or deterministic polishing will be used to correct for high order abberations in the Ti:sapphire and integrated system

- The optic is manufacturable using conventional techniques
- The surface deviation from a sphere is < 15 mm

The thermal model for the gas-cooled amplifier in the Mercury laser has been benchmarked

The benchmarked model enables predictive capability for advanced designs

The helium gas-cooled Ti:Sapphire amplifier head is embedded in a 4-pass image-relay cavity

The scalable average power and high beam quality capabilities of this design are new contributions to the field

The thermally induced wavefront distortion in the Ti:sapphire will be almost entirely power (focus)

Power correction can be achieved by adjusting the beam transport optics or the deformable mirror

300 X 380 mm Roof mirrors

The compressor vessel accommodates large gratings in a modifiable space frame

Compressor grating in 3-axis mount

> 510 X 600 mm Gratings

-

The gold gratings are fabricated with a new gold-on-glass technique with ULE substrates to limit thermal effects in the compressor

NIF-1008-15531 22AB/bc

The 10 Hz Femto-Petawatt Laser laboratory

Beam transport from Mercury

Oscillator & Stretcher

Clean Entrance

532 nm pump lasers

Class 100 enclosures

Installation of regenerative amplifier

10 fs oscillator and pump lasers installed, stretcher aligned, regenerative amplifier in process

NIF-1008-15532

The 10 Hz Femto-Petawatt Laser will access a new high-field physics regime

The laser will provide 150 W (36000 PW shots/hr) which can generate a flux of X-rays, electrons, protons, and neutrons for high intensity applications

Petawatt / Mercury Team:

Kathy Allen Felicie Albert Kathy Alviso **Paul Armstrong Chris Barty** Andy Bayramian Glenn Beer John Caird **Rob Campbell** Manny Carrillo Diana Chen **Rick Cross** Chris Ebbers Al Erlandson **Barry Freitas** Glenn Huete **Rod Lanning Bill Molander Noel Peterson Kathleen Schaffers** Nick Schenkel **Craig Siders Steve Sutton** John Tassano **Peter Thelin** Steve Telford **Everett Utterback**

NIF Collaborators: John Adams **Ray Beach** Erlan Bliss Gina Bonanno Jack Campbell John Crane Sham Dixit Steve Fulkerson Chris Gates **Chris Haynem** Mark Henesian Ken Jancaitis **Mike Johnson** Laura Kegelmeyer **Janice Lawson** Scott Lerner Ken Manes **Joe Menapace** Naresh Mehta Steve Mills John Murray **Jim Murray Charles Orth Chuck Pettv** Shahida Rana **Greg Rogowski Rick Sacks** Lynn Seppala **Ralph Speck Chris Stolz Tayab Suratwala** John Trenholme **Gary Ullery Ron White**

Clay Widmayer

Industrial Collaborators: Blue Ridge Optics

Coherent, Inc. Crystal Systems Inc. **Directed Energy, Inc.** Laboratory for Laser Energetics Northrop-Grumman **Onyx Optics** Precision Photonics PHASICS Night N (opt) Ltd. - AL Crystal Photonics **Quality Thin Films Schott Glass Technologies** Spica Zygo

