

OVA

A shot on the Z Machine

International Conference on Ultrahigh Intensity Lasers

Shanghai-Tongli, China, October 27-31 2008 **Briggs Atherton, Sandia National Laboratories** (505) 284-9505; bwather@sandia.gov

Z-Backlighter-Team Members

Manager Briggs Atherton

Laser Science and Operations

Richard Adams Dave Bliss Verle Bigman Mark Kimmel Patrick Rambo Jens Schwarz Jon Shores Ian Smith

Electronics, Controls and Pulsed Power

Robin Broyles Jeff Georgeson Drew Johnson Randy Manzanares Tracy Montoya Kathleen Pettit Allen Smith

Target Science and Experiments O

Optics and Cleanroom Support

Guy Bennett Aaron Edens Matthias Geissel John Bellum Damon Kletecka Wade Nead James Potter Joanne Wistor

Engineering

Daniel Headley Jeff Kellogg Marc Ramsey Grafton Roberson

The new ZR facility in operations

Capability	Z	ZR
Peak load current reproducibility	5%	2%
Pulse shaping flexibility	Minimal	Significant Variability
Peak Current	18 MA	26 MA
Full current operation	100 ns	130ns, 300ns
Diagnostic Lines of Sights	9	18

Sandia's ZR z-pinch facility

Phases of a z-pinch implosion

wire array

implosion

Current

JxB Force

stagnation

stagnation

B-Field

ZR z-pinch facility

ZR parameters

- 20 MJ stored energy
- 26 MA peak current
- 100 TW electrical power pulse
- \geq 300 TW x-ray power
- \geq 2 MJ x-ray energy
- \geq 200eV Blackbody radiation

The Z-Backlighter Laser facility

Z-Backlighter laser facility

- The terawatt-class Z-Beamlet laser creates backlighting xray sources in the 1-9 keV range.
- The Z-Petawatt laser creates backlighting > 8keV range

Final Optics Assembly Installed on Z

Point projection x-ray backlighting using the Z-Beamlet Laser

Point-projection x-ray backlighting has been used extensively to study ICF capsule implosions

Initial 6.7 keV imaging used a 4.8x imaging geometry with a large laser focal spot size

Improved 6.7 keV system used 1.7x imaging with 100 μ m spot sizes to yield 50 μ m spatial resolution

Curved-crystal imaging offers an elegant solution for backlighting in hostile environments

Bent-crystal Imaging

- Monochromatic (~0.5 eV bandpass)
- 10 micron resolution
- Large field of view (e.g. 20 mm x 4 mm)
- Debris mitigation

The higher spatial resolution bent-crystal imaging system revealed new features in imploding capsules

3.4-mm diameter plastic ICF capsule

Capsules had 100s of known defects on surface that apparently produced a myriad of small jets

Available Laser Systems

Backlighter

- λ=527nm
- τ=0.3-8ns
 (2ns common)
- ϕ ~75µm spotsize
- E<2kJ
- I<10¹⁷ W/cm²
- •~3 hr/shot
- 2 pulse MFB

- λ=1054nm
- τ =500fs min
- ϕ ~30 μ m spotsize
- E<60J (<500J pending)
- I>10¹⁹ W/cm²
- ~3 hr/shot
- Sub-ps probe
- @ 527nm, <20mJ

• λ=1064nm (532nm option)

NLS

- τ=150ps
- $\phi \sim 5 \mu m$ spotsize
- E<10J
- I<10¹⁷ W/cm²
- ~20 min/shot
- Pending: 8-10ns operations at >100J @1ω

Large Scale Coating Chamber

• Recent coating efforts have focused on Z-Petawatt needs, including 94 cm truncated HR mirrors.

FY07 Optics	30 cm	60 cm	94 cm
Z-Beamlet	42 AR	4AR	
Z-Petawatt	6AR & 4HR	3AR	3HR

- Backlighting operations require a continuous supply of AR coated debris shields.
- To this end, we installed a 90" e-beam deposition coating chamber.
- Single-run capability: 3 at 94 cm optics 1 at 1.5 m option
- Ion-assisted deposition (IAD) optional

• Independent damage testing (SPICA) has shown good test results. Using a definition of 25 cumulated damage sites (non-propagating) gives thresholds:

- In the range of 17-25 J/cm² for AR coatings
- In the range of 75-85 J/cm² for HR coatings
- Successful application to both air and vacuum use environments.

* 1064nm, 3.5ns pulse, 1.06mm spot scanned to fill 1cm² with 2300 shots for each of 13 levels from 1-37 J/cm², NP sites are of size 15 μ m

The Z-Beamlet Laser system

The Z-Beamlet Laser has recently being modified to provide a "2-frame" backlighting capability

Adaptive Optics

For higher order corrections, a commercial Phasics adaptive optics system has been installed in August 2007.

pulse @ 10Hz

Backlighter

(Final)

PEPC for Backreflection Isolation

 Initial tests on 100 TW system showed that target back reflection would cause laser damage at 1 PW level.

Polarizer => Installation of plasma electrode Pockels cell for isolation

, , , , ,

PEPC

I

Transport Telescope

Petawatt Compressor Vessel

Three sections form vessel: 4.4 x 4.4 x 13.2 m³

- 2 Tier design
- weight: 43 tons
- 4600m³/h roughing + 3 ISO 500 Cryos allow:

1x10⁻⁵ Torr in 3 hours or 2x10⁻⁷ Torr in 15 hours

Uncompressed energy: 420 J

Compression: < 2ps Compressed energy: 225 J

1st Z-Petawatt Shot (Spectrum)

- Intensities don't scale (different scanning parameters).
- Signal-to-noise ratio for the Z-Petawatt shot is the best we have ever achieved
 - for K_{α} measurements.
- Very nice resolution/separation of $K_{\alpha1}/K_{\alpha2}$ doublet.

PW FOA Debris

• Debris is generated from laser target interactions (minor) and z-pinch (major) sources.

- Vapor debris <25km/s
- Particulate debris <1km/s
- Terawatt/nanosecond scale backlighting deals debris via debris shields (30X30X1cm³)

- Target s
 Forces c
 optics to r
 Possibly
 against la
- Petawatt/picosecond scale backlighting must deal with debris differently due to B-integral effects:
 - Thin (2.7 μm) polymer film shields (passive)
 - Intelligent optics enclosure design
 - Fast debris shutters (active)

Jens Schwarz 9:04 Friday

PW Target Area

•Experimental Capabilities:

- ZBL only
- Z-PW only
- ZBL and Z-PW
- Small pulsed power supply
- High grade radiation shielding

100TW Target Area

- •Typical: 1054 nm, 50 J, < 1 ps, ~ 10^{19} W/cm² laser intensity pointing stability < 50 μ m
- Optical probe beam at 1054/527 nm, 30/10 mJ, τ < 500 fs, ps to multi ns delay possible

Diagnostics:

- K α imager, X-ray pin-hole cameras
- multiple X-ray and optical streak cameras, 200 fs resolution at 1:40 dynamic range, 5 ps at 1:1000
- various X-ray and optical spectrometers
- single photon counting CCD's
- 12 GHz digital scopes
- Thompson parabola
- HV supplies up to 20 kV
- IP and CR39 detectors
- EMI shielded instrumentation cabinets up to 120 dB

Quadrupole Focusing Experiments

PRL: "Controlled Transport and Focusing of Laser-Accelerated Protons with Miniature Magnetic Devices", 1 August 2008

Matthias Geissel: Tuesday 14:24pm

Backlighter

Conclusion/Future Upgrades

- Every component of the PW system has been exercised and the commissioning shot last year demonstrated integrated system functionality.
- New PW FOA needs to be assembled and installed for ZPW on Z.
- Several subsystems need to be optimized, e.g.: PEPC, DFM, laser diagnostics
- Dichroic mirror will enable ZBL/ZPW on same shot; focusing needs to be addressed
- PW target chamber in Target Bay will allow ZBL/ZPW experiments (planned FY08/09)
- Upgrade to MLD gratings (80cm X 20cm) will allow 240J@600fs operation in the 100TW target chamber
- Upgrade to MLD gratings (1.2 m x 0.4 m) will safely allow: 4.2 kJ @ 10 ps 94 cm x 40 cm gratings already demonstrated at Osaka, 60 cm x 20 cm for testing in house 1.4 kJ @ 600 fs
- Main cavity redesign to full aperture 4-pass configuration will allow to extract up to 5 kJ long pulse; cavity lenses and transport telescope lenses are on order

