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Relativistic laser-produced plasma
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Relativistic laser-produced plasma
Our base for experimental research

Laser unit J ≥ 3×1018 W/cm2

λ = 1,06 μm
εpulse = 10-- J
contrast > 1010

Diagnostic complex

X-ray
- quartz crystal 
Neutrons
- 3He counters
- plastic

scintillators
γ-radiation
- stylbene
- NaI(Tl)

- charged particles – p, α
- ion temperature Ti

- magnetic field B
- particle velosity Vi
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Relativistic laser-produced plasma
Our base for theoretical research

Relativistic
1. Plasma physics
2. Electrodynamics
3. Magneto-hydrodynamics
4. Quantum mechanics

Numerical simulation
PIC-code “KARAT”



Laser plasma magnetic fields

J = 1018 W/cm2; B = 100 MGs;  PM = 4×10-8B2 = 400 Mbar;  Ti = 350 keV
5

J,B 10=

J~BPM π8

2

=

53
1

,
K J~T~P

Pinch-effect region
PM >PK

J > 1,5×1017 W/cm2

Relativistic plasma
εp ≥ mec2

J > 1,4×1018 W/cm2
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Key role of laser magnetic field
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Experimental investigations I
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1. Generation of fast MeV electrons
 a)  γBREMSST (Scintillation detector + Pb filters)
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2. Generation of fast MeV protons

a)

b) CR-39 track detectors with Al filters
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Experimental investigations II
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D + 3He → 4He(3,67 MeV) +
+ p(14,67 MeV) + 18,34 MeV

Yα,p ~ 104

D + 6Li → 4He + 4He + 22,37 MeV
Yα ~ 2×103 Eα ≈ 11 MeV

H + 11B → 34He + 8,68 MeV
Yα ~ 2×103

Eα ≈ 2,9 MeV

p + 7Li → 4He + 4He + 17,3 MeV
Yα ~ 2,4×103 Eα ≈ 9 MeV
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Spatial structure of magnetic fields generated in laser 
produced plasma

Coincidence of equations for a magnetic field in laser plasmas and for a 
potential vortex results in identity of their spatial structures
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The transformation of rotational energy into a 
translation motion is a relativistic effect

An electron vortex producing a quasi-
stationary magnetic field and their 
analogous classical potential vortex can 
exist only in motion. 

If a charged particle (for example, an 
electron) rotates with the velocity V in 
field of an electromagnetic wave, then 
this particle acquires obligatory some 
velocity along the direction n of the wave 
propagation.
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Electrons and ions 
in relativistic laser 
plasmas form the 
one vortex 
structure – a 
potential vortex. 
This structure 
moves together 
with produced 
electromagnetic 
fields having the 
velocity of an 
electric drift          
(at    <    ):

[ ]
2B
BEv c=

E B

The requirement 
of quasi-neutrality 
results in motion 
of positively 
charged atomic 
ions.

Stages of evolution of laser plasma
a) I-st stage – vortex electron structure is produced in anomaly skin-layer 
in order to carry magnetic field;
b) II-nd stage – ions are involved in vortex motion, they are decelerated in 
target with loss and acquire of new ions by vortex structure; 
c) ions are not disappeared due to their deceleration in a layer which is 
less than absorption length in a matter;

d) propagation of quasi-neutral potential plasma vortex in a space. 11



Interaction of Al-foil 
with ring-shape ion 
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Scheme of experiment
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The photo of the track detector 
CR-39 covered by 11 μm Al 

filter. Detector CR-39 shows the 
tracks of protons with energies 

Ep > 0.8 MeV
ϕ1/2 ≈ 14° (cone half angle)

The proton distribution inside the spot for detector 
with 11 μm Al (Ep > 0.8 MeV). Target Cu 25 μm.
a) all protons with energy E = 0,8 ÷ 5 MeV
b) protons with energy E < 2,5 MeV

Ring structure of proton beam, moving from 
rear surface of the Cu foil
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Conclusions
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Super-strong quasi-stationary magnetic 
fields generated in laser-produced plasma 
open new possibilities for realization nuclear 
fusion of various perspective nuclear fuels.

The magnetic fields generated in laser 
plasma showed its key role in

- Heating ( > 100 keV) of plasma
- Large plasma lifetime
- Possibility of plasma  fast  ignition  using

magnetized plasma vortex structures


