Studies of High Order Harmonic Generation, Electron Acceleration and Intense X-ray Generation using Ti:Sapphire Laser Pulses

#### P. D. Gupta

Laser Plasma Division <u>Raja Ramanna Centre for Advanced Technology</u> <u>Indore 452013</u> <u>email: pdgupta@rrcat.gov.in</u>

International Conference on Ultrahigh Intensity Lasers Development, Science and Emerging Applications Shanghai-Tongli, China October 27 – 31, 2008

## Raja Ramanna Centre for Advanced Technology

National R & D Centre for Lasers and Accelerators



- Total staff strength is ~1250 of which ~450 are scientists and engineers
- Laser Plasma Division : 25 scientists and engineers
- Ultrahigh intensity laser-plasma interaction ( 2006 onwards)
  - Coherent XUV-soft x-ray radiation (HHG / X-ray Lasing)
  - Laser driven electron acceleration
  - Intense X-ray generation and applications
  - > Energetic ions/ protons/ neutrons/  $\gamma$  rays

## Outline

- High power laser systems
- Studies in ultrashort pulse, high intensity laser plasma interaction
  - High order harmonic generation from pre-formed plasma plumes
  - Resonant intensity enhancement of single harmonics
  - Laser driven electron acceleration
  - Intense X-ray emission from carbon nano-fibres
  - Ultrashort pulse K- $\alpha$  X-ray line emission
  - Fast electron generation / MeV X-ray Bremsstrahlung
- Conclusion

## High Power Laser Systems

#### 1 TW, 1 ps Nd: Glass Laser

- 1 J, 1 ps laser pulses
- Highly stable regenerative amplifier Opt. Commun. 25, 369 (2005)

10 TW, 45 fs Ti: Sapphire Laser

Peak intensity ~ 2 x 10<sup>18</sup> W/cm<sup>2</sup>





# Studies of ultrashort pulse, high intensity laser-plasma interaction



150 TW, 25 fs Ti: Sapphire Laser

**Under procurement** 

(For studies at higher intensities in the relativistic regime)

# High Order Harmonic Generation

## Harmonic Generation from Preformed Plasma Plumes



- Low intensity harmonics
- ➢ Intensity increase by ≥ 1000X desired
- Resonance enhancement of single harmonic by coinciding it with some atomic resonances

Plasma can be produced from most elements (or their compounds)

 $\rightarrow$  Greater possibility of atomic / ionic resonances

#### Also higher rep rate operation possible

# Generation of Intense Coherent X-ray Radiation



Spectrum of high order harmonics from silver plasma



Coherent x-ray radiation at several discrete wavelengths down to 12.9 nm is produced

# **Optimization of Laser Focus Position**



J. Opt. Soc Am. B 23, 2535 (2006)

• Focus at plume center : high  $n_e$ 

- Large phase mismatch
- Harmonic intensity vanishes
- Radial ionization gradient
  - Self-defocussing
- ★ Laser focus before plume centre :
  more divergence → smaller intensity
- Laser focus after plume centre : reduced divergence → higher harmonic intensity

J. Appl. Phys. 103, 013107 (2008)

#### Dependence of Harmonic Intensity on Length of Plasma Medium



- Coherent radiation :  $I_q \propto L^2_{med}$
- Slower scaling (  $I_q \propto L^{0.8}_{med}$  ) occurs due to increasing phase mismatch and harmonic absorption with increasing length of plasma plume

### **Tuning of Harmonic Frequencies**

Harmonics are produced in the initial part of the laser pulse as the phase matching condition is spoilt by overionization at higher intensities



**Effect of Chirp Variation** 

Harmonic tuning range  $\sim 0.8$  nm

J. Opt. Soc. Am. B 24, 1138 (2007)

## Intensity Enhancement through Harmonic Tuning

#### **Indium Plasma Harmonics**



13th harmonic: 200 X

#### **Chromium Plasma Harmonics**



Phys. Rev. A 74, 63824, (2006)



Harmonic frequency tuning Enhancement / extinction

Optics Letters 32, 65 (2007)

# **Laser Driven Electron Acceleration**

# **Electron Acceleration Experiments**



- Self-Modulated Laser Wakefield Regime
  - Electron beam profile, beam energy, total beam charge
  - Forward Raman Scattering (density measurement)
  - Effect of laser chirp on electron beam charge
- ✤ Well collimated, monoenergetic electron beam with minimum divergence of ~ 4 mrad in energy range of 10 20 MeV

# **Electron Acceleration : Experimental Results**



- For  $n_e > 5 \ge 10^{19}$  cm<sup>-3</sup>, electron beam was produced in each laser shot with total charge > 2 nC
- Most measurements done at  $n_e \sim 8.5 \times 10^{19} \text{ cm}^{-3}$ . Beam divergence < 10 mrad is observed, minimum divergence ~ 4 mrad
- Side-imaging of incoherent Thomson scattered laser light shows occurrence of relativistic self-focusing

# **Energy Spectrum of Electron Beam**

#### Electron energy spectrograph (Energy range : 6 – 50 MeV)



#### **Continuous energy spectrum**





- Monoenergetic beam at  $n_e \sim 8.5 \times 10^{19} \text{ cm}^{-3}$  (  $\sim 20 \%$  of shots )
- Peak energy : 10 20 MeV with energy spread of  $\Delta E/E < 4$  % ( limited by spectrograph resolution )

#### Monoenergetic spectrum





# Forward Raman Scattering (FRS)





- FRS : Occurrence of self-modulation
- Electron density from wavelength shift of Raman satellite in good agreement with interferometry measurements
- At high electron density, Raman satellite broadens





## **Effect of Laser Chirp on Beam Charge**



- Positive chirp up to a certain value increases electron beam charge
- Negative chirp decreases the electron beam charge
- Variation in beam charge with laser chirp may arise due to wavelength dependent group velocity which affects self-modulation of the laser pulse

# **Intense X-ray Generation** (Sub - keV, Multi - keV, MeV)

### **Enhanced X-ray Emission in the Water-Window Region Target : Carbon Nano-fibres (CNF) and Graphite**



SEM picture of CNF target

**Resonant field enhancement** 

$$E_{in} = \frac{2 E_0}{\varepsilon + 1}$$
,  $\varepsilon = 1 - \frac{n_e}{n_c}$ 

Resonance at n<sub>e</sub>= 2n<sub>c</sub>

$$\tau_R = \frac{r_0}{c_s} \left( \sqrt{\frac{n_0}{2n_c}} - 1 \right)$$



#### 60 nm CNF vs Graphite

- Enhancement  $\approx$  18 X for  $\tau_L \approx$  45 fs
- Enhancement  $\approx$  28 X for  $\tau_L \approx$  300 fs

### High Brightness Monochromatic K-α X-ray Line Emission (For High Resolution Ultrafast X-ray Diffraction etc.)

Target : Titanium foil

10 TW 45 fs Ti:sa Laser Laser : 10 TW, 45 fs

X-ray Crystal Spectrograph

Spectral resolution : 3.9 eV





Look for laser / target irradiation parameters to produce small spectral width of K-α line

#### Spectral Broadening of K-α X-ray Line

# Different laser fluences Constant Intensity $\approx 10^{17} W \text{ cm}^{-2}$



Spectral width increases from 4.2 eV to 8.8 eV for higher laser fluence

Different laser intensity & pulse duration Constant Fluence  $\approx 5.9 \times 10^4 \text{ J cm}^{-2}$ 



At constant fluence, no change in spectral width for two widely different laser intensities

- $\Rightarrow$  Spectral width of K- $\alpha$  radiation is closely linked to the laser fluence
- Increase in laser fluence is accompanied by increase in pre-pulse intensity
- Prepulse produces low temperature plasma in front of the target
- Observed spectral broadening occurs due to blending of blue-shifted K-  $\alpha$  line from Ti<sup>1+</sup> to Ti<sup>7+</sup> ions present in plasma with neutral Ti K-  $\alpha$  line

# MeV Bremsstrahlung X-ray Emission

#### • $I_L \approx 1.3 \text{ x } 10^{18} \text{ W/cm}^2, \tau \approx 45 \text{ fs}$



**Energy spectrum of electrons** 



J. Appl. Phys. 102, 063307 (2007)

#### Angular distribution ( $h_V > 40 \text{ keV}$ )



- Electrons with energy up to ~2 MeV
- Two sources of hard X-ray radiation :
  - One at target ( electrons going into the target )
- The other in glass window of plasma chamber
- The second source gives rise to observed anisotropic distribution

#### **Narrow-Band Water Window X-ray Emission**

(For Live X-ray Microscopic Imaging)

Water-window 23 Á - 44 Á





**Gold-copper mix-z plasma** Appl. Phys. Lett. 83, 27 (2003)

**Free-standing Al / V filter** Transmitted x-ray spectrum



Appl. Phys. B 86, 519 (2007)

## Acknowledgements

All colleagues in Laser Plasma DivisionP. A. Naik, V. Arora, H. Singhal, B. S. Rao, U. Chakravarty,S. R. Kumbhare, R. A. Khan, J. A. Chakera, A. Moorti

Collaborators:

 R. Ganeev, Academy of Sciences, Uzbekistan
 K. Nakajima, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Thanks to ICUIL 2008 organizers for the invitation

