Optimization of high order harmonic generation and application to holography

Xinkui He

Miguel Miranda, Jörg Schwenke, Alexander Mai, Florian Geier, Anders Persson and Anne L'Huillier

Atomic Physics Division, Department of Physics, Lund University, Sweden

A Semi-Classical Picture

Lund Laser Centre

$$\delta \Phi_q(z) = \Delta k_q z - q \arctan(z/z_R) + \alpha_j I(z),$$

Laser: 100mJ 35~40fs

Lund Laser Centre Divergence of the harmonic beam

Typical experiment spectrum.

Lund Laser CMeasure the absolute harmonic energy

A calibrated XUV photodiode is used to measure the absolute energy of harmonic generation. Two 200 nm Al filters were needed to block the fundamental beam.

Lund Laser Certrossibility to broaden the wavelength

Spectrum with different iris

Tungsten microscope tips

Lund Laser Centre

Hologram

Reconstructed

objects

single shot Tip width: 4.3 μm multiple shots Tip width: 4.7μm

Summary

- 30~40nm, 170nJ,
- phase-matching is achieved,
- Single shot holography.

Thanks

