

Researches on Laser Wake Acceleration at LFRC: Progress and Problems

Gu Yuqiu

谷渝秋

Laser Fusion Research Center, CAEP Mianyang, Sichuan, China, 621900

Laser Fusion Research Center , CAEP

Collaborators

Wu Yuchi, Liu Hongjie, Cao Leifeng, Wen Xianlun, Hong Wei, Jiao Chunye, Zhao Zhongqing, Li Chaoguang, Zhang Baohan, Peng Hansheng

K. Nakajima, R. Taki, T. Kameshima and S. Kurokawa

Liming Chen, H. Kotaki, S. Bulanov and T. Tajima

Hua Jianfei, An Weimin, Tang Chuanxiang

Laser Fusion Research Center , CAEP

Outline

Introduction

Electron Acceleration Experiments

>10mm long gas jet experiments

≻5mm long gas jet experiments

≻ 2. 7mm long gas jet experiments

Summary

Laser Fusion Research Center , CAEP

- Laser wake accelerators are very promising energetic electron sources for several potential applications:
 - Gamma ray sources for radiography and photo-nuclear reaction

> FEL

- Injector for synchrotron
- >
- There are different demands for these potential applications:
 - > Large e-number and tens MeV for γ -ray source
 - > High beam quality and larger than GeV for FEL
 - Tens GeV or TeV for high energy physics

Gamma ray radiography based on laser wake accelerators are more compact and easy to multi-axes and multi-frames comparing with traditional accelerators.

What kinds of electron beams we need for Gamma radiography?

✓ Considering the S/N of 1%, we need 10⁴ photons (according to statistic law N⁻²) on one pixel and one picture constituted of 1000×1000 pixels, total 10^{10} photons are needed. If the detecting efficiency and accepting angle are included, at least, 10^{11-12} is reasonable.

 \checkmark If we want to probe matter of 100-200g/cm² in HEDP experiments, several MeV $\gamma\text{-ray}$ photons are needed.

Thus, Tens MeV electron beam with 10¹⁰⁻¹¹ electrons(1nC~10nC) is capable of this application!

Laser Fusion Research Center , CAEP

Gamma ray from electron beam interation with high-Z targets (MC simulations)

γ Spectrum as 10MeV ebeam interacting with 2-mm Ta target

Tomography of e-beam in Ta target

Laser Fusion Research Center , CAEP

How to get tens MeV electrons with larger than 1nC charge number?

> Larger gas density and short gas jet column

- Increasing laser energy
- Increasing contrast ratio

$$\Delta E \left[GeV \right] \approx 1.7 \left(\frac{P(TW)}{100} \right)^{1/3} \left(\frac{10^{18}}{n_p (cm^{-3})} \right)^{2/3} \left(\frac{0.8}{\lambda_0 (\mu m)} \right)^{4/3}$$
$$N_b \approx \frac{3}{2k_0 r_e} \sqrt{\frac{P}{P_c}} \qquad P_c = 17.4 (n_c / n_e)$$

Laser Fusion Research Center , CAEP

SILEX-I (Super Intense Laser for Experiments on the Extremes)

Experiment Setup in SILEX-I

Laser Fusion Research Center , CAEP

The profile of laser focusing spot

Φ=15µm (FWHM) with F/8.7 OAP Φ=30µm (1/e²) containing 30% energies I=8.5×10¹⁸W/cm² for 200TW, $a_0 \sim 2$

Laser Fusion Research Center , CAEP 2003, 3th ICUIL

Rectangular nozzle situation

Rectangular Shape Gas Nozzle

Laser Fusion Research Center , CAEP

Thomson scattering image

Laser Fusion Research Center , CAEP

Laser Fusion Research Center , CAEP

Conical nozzle used in the experiment

Laser Fusion Research Center , CAEP

Electron spectrum from 4.2mm-long gas column

30MeV~80MeV monoenergy electron beams were generated by 200TW/30fs laser 5-mm long He2 gas jet and laser contrast ratio is better than 10⁵. plasma density is 2.5×10¹⁹cm⁻³

Laser Fusion Research Center , CAEP

Electron spectrum from 2.7mm-long gas column

ICT signal. Integrating the the first peak, 15nC was reached.

Laser Fusion Research Center , CAEP

Electron yields under different conditions

Shot No.	Laser energy(J)	Backing pressure(MPa)	Contrast ratio	Charges(nC)
0923070	1.311	2.3	107	6.878
0923071	2.3115	2.3	104	11.304
0923072	2.07	2.5	107	15.456
0923073	2.277	2.8	107	16.626
0923074	2.3805	2.9	104	11.732
0923075	3.8985	2.5	104	9.764
0923076	1.9665	2.5	107	4.936
0923077	2.4495	2.5	107	9.364
0923078	2.898	2.5	107	12.958
0923079	3.2085	2.5	107	20.13

Summery

Electron acceleration experiments were conducted using 200TW/30fs laser interaction with different length gas jet.

Monoenergy electrons From 50MeV to 130MeV were observed at plasma density larger than 2.5×10¹⁹/cm³

The total beam charge number reached to 15nC, which is suitable for γ-ray generation.

Laser Fusion Research Center , CAEP