

Stable 10 MeV class quasi-mono energetic electron bunch generation by laser wakefield and selfchanneling

Kiminori Kondo Kansai Photon Science Institute, Japan Atomic Energy Agency

ICUIL 2008 Oct. 27-31, 2008 Tongli Lakeview Hotel Shanghai China

Joint Research between ILE and KPSI

KPSI JAEA

Michiaki Mori, Kiminori Kondo

H. Kotaki, M. Kando, M. Kado, S. Bulanov, H. Daido

ILE Osaka

Y. Mizuta, K. A. Tanaka, H. Nishimura

Background

→ Stable E-beam Generation is required!

How to get a stable acceleration

Experimental setup

Result(1) e-beam divergence

Result(2) e-beam pointing stability

Result(3) e-beam divergence and pointing stability

Spatial profile of the e-bunch (>1MeV)

Helium target

Argon target

Plasma density: $n_e \sim 4x10^{19} \text{ cm}^{-3}$ (in He and Ar)

Result(4) e-beam energy distribution

Discussion(1): Energy dist./Beam div. • Pointing

Discussion(2):laser propagation

Summary

- With Ar target, well collimated and pointing stabilized ebeam have been obtained rather than He target, while quasi-mono energetic distribution is also observed.
- These results suggest that a comparatively longer acceleration distance could be realized in Ar.
- With Ar, cluster jet can be formed. Index of cluster mixed media might affect a long propagation of focused laser pulse.