2008 ICUIL, Tongli, Shanghai 2008. 10. 27 ~ 10. 31

韓國原子ナ

K. Lee, S. H. Park, Y.-H. Cha, J. Y. Lee^a, Y. W. Lee, K.-H. Yea, and Y. U. Jeong Quantum Optics Division, Korea Atomic Energy Research Institute ^a Department of Applied Optics and Electromagnetics, Hannam University

Contents

Introduction: Laser acceleration of proton beams

Mechanisms for laser-acceleration of proton beam

Proton beams between metal and plastic targets

Acceleration mechanism for plastic target: ARIE model - proposal

Proton beams on ASE pulse width between metal and plastic targets

Quantum Optics Division - Laser-acceleration, High intensity laser, High energy laser, High power laser Laser isotope separation, Laser diagnosis, Electron accelerator, Free Electron Laser

Laser induced acceleration of ion beams

J. Fuchs et al., POP <u>14</u>, 053105 (2007)

Spencer et al., PRE <u>67</u>, 046402 (2003)

7x10¹⁸ W/cm², 60 fs

KAERI Table-top 30 TW Laser

3-stage amps

Compression Chamber

Wed. Poster II-54

Ti:Sapphire Laser 0.8um, 30fs, p-pol < 1 J

Experimental Set-Up I

OAP, 45°, 178mm

Ti:Sapphire Laser 0.8um, 30fs, p-pol,< 300mJ φ10 μ<mark>m, <3</mark>x10¹⁸ W/cm² (a<1.2)

Target

D AXUV100 XPD2 (Al 50umx4sh)

> IRD AXUV XPD1 (Al 300umx2sh)

s for beam size monitoring

E=1.5 kV/5mn B=6 47kG

19 (TASTRACK)

Anomalous behavior of Plastic target

• Protons from Mylar target have higher maximum energies in 10¹⁷-10¹⁹ W/cm²

- For Mylar targets, there are large discrepancies between exp. and model.
- Metals coated with plastic place between Mylar and metal.
- These investigations require new acceleration mechanisms for plastic target.

Anomalous behavior of Plastic target

- 1. Comment of a bulk acceleration by Spencer et al.
- 2. Initial high plasma resistivity of plastic target
 - High resistivity of initially unionized plastic target is seriously underestimated by the plasma model Key et al., POP 5, 1966 (1998).
 - Spatial disruption of electron flow inside insulator target Fuchs et al., PRL 91, 255002 (2003).
 - As target resistivity increases, front side acceleration becomes dominant Gibbon PRE 72, 026441 (2005).
 - Inhibition of hot electron transport by resistively induced electric field Bell et al.

Inhibition of hot electron transport by Resistively Induced Electric field

Bell et al., PPCF 39, 653 (1997)

ARIE model

Acceleration by Resistively Induced Electric field

K. Lee et al., PRE 78, (2008)

$$\boldsymbol{E}_{r} = \eta \boldsymbol{J}_{return} \sim \eta \boldsymbol{J}_{h} \sim \eta \boldsymbol{n}_{h} \boldsymbol{e} \boldsymbol{v}_{h}$$

$$E_r = E_o \left(\frac{t}{\tau_L}\right) \left(\frac{x_o}{x + x_o}\right)^2,$$

$$E_o = \eta e c n_{ho} \frac{a}{\sqrt{1+a^2}},$$

Assumption: - V_h from T_h

- Proton is accelerated after $t=\tau_L$,
- E_r is kept static during acceleration.
- Maximum proton energy from x=0

$$E_p^{\max} = eE_o x_o$$

$$\approx 2 \frac{\eta f T \tau_L}{T_h} \frac{a}{\sqrt{1 + a^2}} [MeV]$$

- **1. Linear dependence on resistivity**
 - ARIE gets dominant for plastic target of which resistivity considered to be high

 $T_h = m_e c^2 \left(\sqrt{1 + a^2} - 1 \right)$

- 2. Bulk acceleration: Higher number of protons
- 3. But it is difficult to determine plasma resistivity in a self consistent way

Anomalous behavior of Plastic target

Proton Spectrum on Pre-pulse

2.4x10¹⁸ W/cm²

Maximum Proton energies on Pre-pulse

- Proton beams generated from metal and plastic targets are compared,
- which shows distinct differences.
- An acceleration model, ARIE is proposed to account for more intense proton beams from plastic targets.
- An effect of the ASE pulse width on the proton generation is also compared between metal and plastic targets,
- which also show clear differences and in the case of plastic targets, it also can be addressed from the ARIE model
- We are preparing a scheme utilizing such an acceleration mechanism for more efficient generation of the proton beams.

The 15th International Symposium on Laser Spectroscopy

Thank for your attention ! and

SOLS 2008 cowardly invite you to the SOLS November 13-14, 2008

KAERI Daejeon, Korea

INVITED SPEAKERS

K. An (SNU, Korea) V. Choi (APRI, Korea) A. Ya. Faenov (JIHT, Russia) Y.-D. Jho (GIST, Korea) E. C. Jung (KAERI, Korea) · M. Kalal (Czech Tech. U., Czech) · K. Y. Kang (ETRI, Korea) · C.-J. Kim (KAERI, Korea) - D. Kim (POSTECH, Korea) - J. U. Kim (KERI, Korea) · H. J. Kong (KAIST, Korea) N. Hafz (APRI, Korea) W. Liu (AIOFM, China) K. Mima (ILE, Japan) E. Miura (AIST, Japan) · C. H. Nam (KAIST, Korea) · H. Niki (Fukui U., Japan) W.-K. Oh (APRI, Korea) · C. Otani (RIKEN, Japan) - D. Sun (AIOFM, China) · S. H. Yoo (KERI, Korea) · J. Zhu (SIOM. China)

CO-OPERATING INSTITUTIONS

- The Optical Society of Korea The Korean Physical Society The Korean Nuclear Society Center for Nano Liquid Center for Ultrafast Optical
- Characteristics Control
- Center for Optical Frequency Control · Coherent X-ray Research Center

INFORMATION

· Dr. Cheol-jung Kim Tel.(042)868-2913

· Dr. Yong-Joo Rhee Tel(042)-868-2935

Proton beams on a laser prepulse

H. J. Lee et al. POP 11, 1726 (2004)

2D PIC simulation

Yogo et al. PRE 77, 016401 (2008)

Polyimid target, 10¹⁹ W/cm², 45 fs

MPI, Kaluza et al. PRL 93, 045003 (2004)

Yogo et al. POP 14, 043104 (2007)

Laser Prepulse (ASE)

Control of ASE pulse width by changing pulse picker opening time installed after a pre-amplifier

• For measurement of the contrast ratio Y. H. Cha et al., Appl. Opt. 46, 6854 (2007)

Main pulse begins to be blocked.

Experimental Set-up

Proton Spectrum on Pre-pulse

2.4x10¹⁸ W/cm²

Maximum Proton energies on Pre-pulse

Proton beam divergence on Pre-pulse

Target: Mylar 6 um CR39: 9 cm away from target with 13 um-thick Mylar filter (E > 0.8 MeV)

Proton number generated on Pre-pulse

• Energy efficiency for E > 0.5 MeV was estimated to be 1 %

- Proton beams generated from metal and plastic targets are compared,
- which shows distinct differences.
- An acceleration model, ARIE is proposed to account for more intense proton beams from plastic targets.
- An effect of the ASE pulse width on the proton generation is also compared between metal and plastic targets,
- which also show clear differences and in the case of plastic targets, it also can be addressed from the ARIE model
- We are preparing a scheme utilizing such an acceleration mechanism for more efficient generation of the proton beams.

Thomson Parabola Exp.

J. Y. Lee et al., JKPS 51, 426 (2007)

Neutron generation

Laser Prepulse (ASE)

Control of ASE pulse width by changing pulse picker opening time installed after a pre-amplifier

Wed. Poster II-54

• Contrast ratio ~ 10⁻⁸ at 10 ns measured by a simple method developed at KAERI.

Y. H. Cha et al., Appl. Opt. 46, 6854 (2007)

Anomalous behavior of Plastic target

Laser induced acceleration of ion beams

