# Petawatt OPCPA Lasers: Status and Perspectives

V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg, E.V.Katin, <u>E.A.Khazanov</u>, A.V.Kirsanov, G.A.Luchinin, A.N.Mal'shakov, M.A.Martyanov, O.V.Palashov, A.K.Poteomkin, A.M.Sergeev, A.A.Shaykin and I.V.Yakovlev *Institute of Applied Physics Russian Academy of Science* 

## Introduction

 Compact 0.56 PW laser system
 Scalability to multi-petawatt power Conclusion

# **Introduction. OPCPA vs CPA**

## **Advantages of OPCPA:**

- + broad gain bandwidth
- + high aperture
- + considerable decrease in thermal loading
- + significantly lower level of ASE
- + very high gain
- + no self-lasing
- + no backscattering from a target
  - Disadvantages of OPCPA: – high precision synchronization – high quality of a pump beam – short (1ns) pump pulse duration



## **Introduction. Petawatt laser systems**

ſ

|                                                                   | type I        | type II            | type III       |  |  |
|-------------------------------------------------------------------|---------------|--------------------|----------------|--|--|
| Gain medium                                                       | Nd:glass      | <b>Ti:sapphire</b> | KD*P           |  |  |
| Energy source                                                     | Nd:glass      | Nd:glass           | Nd:glass       |  |  |
|                                                                   |               |                    |                |  |  |
| Pump                                                              | no            | 2ω Nd              | <b>2ω Nd</b>   |  |  |
| Pump duration, ns                                                 | no            | <30                | 1              |  |  |
| Amplifier aperture, cm                                            | <b>40x40</b>  | 10                 | <b>40x40</b>   |  |  |
| Minimum duration, fs                                              | 150           | 20                 | 20             |  |  |
| Efficiency $(1 \omega \text{ Nd} \rightarrow \phi c), \%$         | 80            | 15                 | 10             |  |  |
| Number of PWs from 1 kJ 1w Nd                                     | 4 (5)         | 8 (1.5)            | 4              |  |  |
|                                                                   |               |                    |                |  |  |
| Maximum power obtained, PW                                        | <b>1.3 PW</b> | 0.85 PW            | <b>0.56 PW</b> |  |  |
|                                                                   | LLNL, 1997    | <b>JAEA 2</b> 004  | IAP 2006       |  |  |
| Diffraction grating damage threshold Ti:sapphire damage threshold |               |                    |                |  |  |

## **Physics of OPCPA. KD\*P vs KDP.**



V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg, E.A.Khazanov, O.V.Palashov, A.M.Sergeev, I.V.Yakovlev. Laser Physics, 15, 1319 (2005).

### Petawatt OPCPA Lasers: Status and Perspectives

Introduction to PW lasers

Compact 0.56 PW laser system
Scalability to multi-petawatt power

#### Compact 0.56 PW laser system. Architecture



Freidman G., Andreev N., Ginzburg V., Katin E., Khazanov E., Lozhkarev V., Palashov O.,

# Key elements of tabletop 300 J Nd:glass laser



# Nd:glass laser output beam



# **Energy characteristics of final OPCPA**



### Compact 0.56 PW laser system. Compressed pulse



Mal'shakov A.N., Martyanov M.A., Palashov O.V., Poteomkin A.K., Sergeev A.M., Shaykin A.A., Yakovlev I.V.



### Compact 0.56 PW laser system. Compressed pulse



### Petawatt OPCPA Lasers: Status and Perspectives

Introduction to PW lasers
Compact 0.56 PW laser system
Scalability to multi-petawatt power Conclusion





### **Scalability to multi-petawatt power. Routes to increase power and contrast**

## **POWER:**

- + Pulse duration: x3 (15fs instead of 45fs)
- + OPCPA efficiency: x2 (40% instead of 20%)
- + Pump power x1.3: (230J instead of 180J)
- + Compressor efficiency x1.2 (79% instead of 66%)

### TOTAL: x11 (6PW instead of 0.56PW)

CONTRAST:
Second harmonic generation in KDP crystal
> theory (includes self-focusing) predicts high efficiency
> crystal 100mm diameter and 0.5mm thickness was grown
> experiments are coming soon

# Four started projects.

### VNIIEF (Sarov) + IAP, Russia, 2005-2008, **3PW OPCPA**



### Rutherford Lab, UK, 2007-2011, 10PW OPCPA



### HiPER, pan-European, 2008-2018, 150PW / 2000PW OPCPA



### ELI, pan-European, 2008-2020 200PW OPCPA or Ti:sapphire

The Extreme Light Infrastructure



# Sarov – N.Novgorod.



# Sarov – N.Novgorod.



I.A. Belov, O.A. et al. *Petawatt laser system of the "Luch" facility* International Conference X Khariton's Scientific Reading, p. 145 (2008)

## Conclusion

**#1. OPCPA at 910 nm in DKDP is the best. No question.** 

#2. There is only one question.
Q.: The best *or* one of the best?
A1: See message #1.
A2: Will live and see.

# Let's think about laser ceramics!

**Cr:YAG ceramics** 

very wide aperture to amplify chirped pulses to the multikilojoule level,

high conversion efficiency of narrow band Nd:glass laser pulses into chirped pulses,

Iarge gain bandwidth to amplify chirped pulses with less than 20 fs durations

E.A.Khazanov, A.M.Sergeev. Laser Physics, 2007. Nd,Yb:Re<sub>2</sub>O<sub>3</sub> ceramics (Re=Y,Lu,Sc)

1. Very wide aperture to amplify chirped pulses to the multikilojoule level

2. Large gain bandwidth to amplify chirped pulses with less than 50 fs durations

3. High conversion efficiency due to <u>direct lamp pumping</u> (lamps pump Nd and excitation transfers to Yb)

E.A.Khazanov, A.M.Sergeev. UFN, 2008.



# **Electon acceleration (preliminary results)**



# 120mm clear aperture OPA



## Scalability to 100(s) petawatt power



**18 fs pulse:** Ripin D.J., Chudoba C., Gopinath J.T., Fujimoto J.G., Ippen E.P., Morgner U., Kartner F.X., Scheuer V., Angelow G., Tschudi T. // Optics Letters, 27, 61-63, 2002.

#### Scalability to multi-petawall power.

## Crazy ideas are welcome!

|                                                    | type I            | type II           | type III                | type IV            |
|----------------------------------------------------|-------------------|-------------------|-------------------------|--------------------|
| Gain medium                                        | Nd:glass          | <b>Ti:saphire</b> | DKDP                    | Cr:YAG<br>ceramics |
| Energy source                                      | Nd:glass          | Nd:glass          | Nd:glass                | Nd:glass           |
|                                                    |                   |                   |                         |                    |
| Pump                                               | no                | <b>2ω Nd</b>      | 2ω Nd                   | 1ω Nd              |
| Pump duration, ns                                  | no                | <30               | 1                       | <30                |
| Amplifier aperture, cm                             | <b>40x40</b>      | 8                 | <b>40x40</b>            | >50                |
| Minimum duration, fs                               | 150               | 20                | 20                      | 20                 |
| Efficiency (1 $\omega$ Nd $\rightarrow \phi$ c), % | 80                | 15                | 10                      | 25                 |
| Number of PWs from 1 kJ 1ω Nd                      | 4 5 (5)           | 8 (1.5)           | 4                       | 10                 |
| Maximum power obtained, PW                         | 1.3<br>LLNL, 1997 | 0.85<br>JAEA 2004 | <b>0.56</b><br>IAP 2006 |                    |

## **Physics of OPCPA.** Wideband phase-matching

