A.Aristov¹, A.Boichenko², S.Mamaev¹, <u>L.Mikheev¹</u>, N.Ivanov³, V.Losev³, E.Polyakov¹, M.Sentis⁴, A.Shirokikh¹, V.Tcheremiskine^{1,4}, V.Trofimov⁵, O.Uteza⁴, V.Yalovoi¹

COMPRESSOR FREE HYBRID (SOLID/GAS) FS SYSTEM

¹P.N.Lebedev Physical Institute, Moscow, Russia ²Institute of General Physics, Moscow, Russia ³Institute of High Current Electronics, Tomsk, Russia ⁴LP3, Aix-Marseille II University Marseille, France ⁵Moscow State University, Russia <u>Photochemically Driven Active Media: New Strategy in</u> <u>the Development of Ultra-high Power Fs Systems</u>

OUTLINE

- Main properties of broadband photochemically driven active media
- Architecture of a hybride multiterawatt systems
- XeF(C-A)-amplifier optically driven by the 172 nm radiation from an e-beam pumped flash-lamp
- Recompression of fs pulses
- Conclusions

Advantages of gaseous optically pumped active media: Low optical nonlinearity → CPA in subps time domain Scalability to very large volumes Low cost of realization High temporal contrast (>10¹⁰)

Photochemically driven broadband active media

Transition	XeF(C-A)	Kr ₂ F (4 ² Γ-1,2 ² Γ)	Xe ₂ Cl (4 $^{2}\Gamma$ -1,2 $^{2}\Gamma$)
	/1/	/2/	/3/
λ_{max} , nm	474	405	485
Δλ, nm	60-100	80	100
$\tau_{\rm lim}$, fs	8-12	7	8
τ_{sp} , ns	100	181	245
σ_{st}, cm^2	10 ⁻¹⁷	2.3×10 ⁻¹⁸	2.8×10 ⁻¹⁸
ε_{sat} , J/cm ²	0.05	0.2	0.15
I, TW/cm ²	2	8	6
$(\tau = 25 \text{ fs})$		0	U

for the fs optical pulse amplification

1. L.D.Mikheev, D.B.Stavrovskii, V.S.Zuev: J. Rus. Las. Res., v.16, 427 (1995)

2. N.G.Basov, V.S.Zuev, A.V.Kanaev, L.D.Mikheev, D.B.Stavrovskii: Kvantovaya Elektron. (Moscow) v.7, 2660 (1980)

3. N.G.Basov, V.S.Zuev, A.V.Kanaev, L.D.Mikheev: Kvantovaya Elektron. (Moscow) v.12, 1954 (1985)

XeF(C-A) amplifier pumped by radiation from a surface discharge

Photos of the photolytical XeF(C-A) amplifiers: a) LP3 of Marseille Univ.(active volume: 5×18×40 cm³); b) P.N.Lebedev Inst. (active volume: 3×11×50 cm³); c) XeF(C-A) amplifier viewed from its front when surface discharge is initiated.

Small-signal gain: 2×10⁻³ cm⁻¹ Total amplification factor: 10²

Surface discharge is promising up to 100 TW

XeF(C-A) amplifier photochemically driven by radiation from a surface discharge. Experimental results.

Total small signal gain of the multipass amplifier 10²

Spectra of fs pulse before (1) and after (2) amplification

Gain distributions versus the distance from the central plane of the amplifier at different instants of time

Architecture of a 10 Tw hybrid fs XeF(C-A) system at LP3 (Marseille University)

R.Clady, G.Coustillier, M.Gastaud, M.Sentis, P.Spiga, V.Tcheremiskine, O.Uteza, L.D.Mikheev, V.Mislavskii, J.P.Chambaret, G.Cheriaux.

Appl. Phys. B, 82, 347-358 (2006).

Architecture of a 100 TW hybrid fs XeF(C-A) system at P.N.Lebedev Inst. (Moscow)

Ti:Sa front end (Avesta Project Ltd)

 $\lambda_{\omega} = 950 \text{ nm}$ $\lambda_{2\omega} = 475 \text{ nm}$ $\tau = 45-50 \text{ fs}$ E = 5 mJf = 10 Hz

Final XeF(C-A) amplifier photochemically driven by 172 nm radiation from an e-beam pumped Xe converter

Active medium length - 1.2 m, clear aperture - 12 cm. E-beam: I=80 κA, U_e= 420 keV, pulse-width – 400 ns. Xe₂ fluorescence efficiency related to e-beam energy is 30-40%

XeF(C-A) amplifier (IHCE, Tomsk)

Experiment: Small signal gain 2.6×10⁻³ cm⁻¹

Theory: Small signal gain 5×10^{-3} cm⁻¹ $E_{stor} = 6$ J $E_{out} = 2-2.5$ J $P_{out} = 50$ TW $\tau = 50$ fs

Recompression of downchirped fs pulses in bulk materials (physical insight)

PW systems – recompression in bulk materials in linear regime Is it possible to do it in output window (nonlinear interaction)? Gaseous active media $\Rightarrow W_{out} \sim (1-4) \text{ TW/cm}^2 << W_{dam}$ (balk glass, gas)

Self-phase modulation

 $\Delta \omega \sim (- dn/dt)$ Kerr effect: dn/dt > 0, $\Delta \omega < 0$ Electron plasma: dn/dt < 0, $\Delta \omega > 0$

Recompression of downchirped fs pulses in bulk materials (physical insight)

$$\Delta n = n_2 Ihv + \sqrt{n_0^2 - \frac{\omega_p^2}{\omega^2}} - n_0 \approx n_2 Ihv - \frac{1}{2n_0} \frac{\omega_p^2}{\omega^2} = n_2 Ihv - \frac{1}{2n_0} \frac{\rho^e}{\rho_{crit}^e}$$

 $n_2 = 3.5 \times 10^{-16} \text{ cm}^2/\text{W}$ is the fused silica nonlinear refractive index, I [phot/cm²s] is the intensity of the electric field,

$$\omega_{\rm p} = \sqrt{\frac{\rho^{\rm e} e^2}{\epsilon_0 n_0^2 m}}$$
 is the plasma frequency, ω is the carrier frequency,

 $m = 0.635m_e$ denotes the reduced mass of the electron and the hole, ρ^e stands for the electron plasma density,

 $\rho^{e}_{crit} = \epsilon_0 n_0^2 m \omega^2 / e^2 \approx 4.2 \times 10^{21} \text{ cm}^{-3}$ is the critical plasma density at 480 nm

Recompression of downchirped fs pulses in bulk materials (physical insight)

Electron plasma generation in fused silica

 $(U_i = 7.5-9 \text{ eV}, hv (480 \text{ nm}) = 2.5 \text{ eV}, U_i / hv = 3-4, W_{out} \sim (1-4) \text{ TW/cm}^2)$:

- 1. Multiphoton ionization (MPI)
- 2. Tunneling ionization minor due to $\gamma = \omega (mU_i)^{1/2}/eE >> 1$
- 3. Avalanche ionization minor?

MPI: $\rho^e \approx \sigma_k I^k N_a \tau_p$, k=3,4

 $\sigma_3 = 6 \times 10^{-81} \text{ cm}^6 \text{c}^2 \text{ (S.C.Jones et al., Opt.Eng. 28, 1039 (1989))}$

 $\sigma_4 = 2 \times 10^{-114} \text{ cm}^8 \text{c}^3$ (S.C.Jones et al., Opt.Eng. 28, 1039 (1989))

 $N_a = 2.2 \times 10^{22}$ cm⁻³, $\tau_p = 30$ fs << electron recombination time of 150 fs.

 $\Delta n = 0$ at W = 4.5 TW/cm² (k=4) or W = 0.7 TW/cm² (k=3)

 $\rho^{e} \approx 2 \times 10^{19} \text{ cm}^{3} \text{ (k=4) or } 3.2 \times 10^{18} \text{ cm}^{3} \text{ (k=3)}$

Recompression of downchirped fs pulses in bulk fused silica (numerical simulation)

Downchirped Gaussian pulse:

$$A\big|_{z=0} = A_0 \exp\left[-(\ln 2)\left(\left(\frac{t-t_0}{\tau}\right)^2 + \frac{r^2}{2a^2}\right) - \frac{i\chi(t-t_0)^2}{2}\right]$$

traveling through a piece of fused silica with normal dispersion. Combined nonlinear (generalized) Schrödinger equation in dimensionless variables:

$$\frac{\partial A}{\partial z} + iD_{r} \Delta_{r} A + iD \frac{\partial^{2} A}{\partial t^{2}} + i(\alpha |A|^{2} - \beta \rho)A + \gamma \frac{\partial}{\partial t} ((\alpha |A|^{2} - \beta \rho)A) = 0$$

$$0 < z \le L_{z}, \quad 0 < t < L_{t}, \quad 0 < r < R$$

$$\frac{\partial \rho}{\partial t} + \frac{\rho}{\tau_{rel}} = \delta(1 - \rho) |A|^{2n}, n = 3$$

Where

$$D_{r} = L^{-1}_{diffr}, D = L^{-1}_{disp}, \alpha = L^{-1}_{sf}, \gamma = 2(\omega_{0}\tau_{pulse})^{-1}, \delta = \sigma^{(3)}NI^{3}, \beta = k_{0}N_{a}/2\rho_{cr}, W = 1.6 \ TW/cm^{2}$$

Nonlinear compression of negatively chirped fs pulses in BK7 (experiment) Jun Liu et al. Opt.Express, v.14, 979 (2006)

BK-7 $\lambda = 800 \text{ nm}$ 1.7 TW/cm²

Conclusions

- Optimistic experimental and theoretical results obtained show that realization of compressor-free hybrid fs system is expected to be feasible.
- Preparation work is now in progress to demonstrate 50 TW peak power in the hybrid fs system which is being built at P.N.Lebedev Institute.