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A crazy ideal

Plasma wave wakes driven by lasers
and charged particle beams, and
Particles surfing on such wakes

T.Tajima and J.M. Dawson PRL (1979)
P.Chen, J.M. Dawson et.al. PRL (1983)
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Early Development

Active theoretical, computational
and experimental research of
plasma based acceleration was
launched shortly after the 1979
Paper. UCLA played a dominate
role for boosting this field to a

scientifically respectable level C.Joshietal, Nature (1985)
through original, well-designed C.Clayton et al., PRL  (1985)

: C. Clayton et al., PRL (1993)
and car'efully lmplemenTed M. Everett et al., Nature (1994)

simulations and experiments A. Modena et al., Nature (1995)

A thorough review on the early development of plasma
based acceleration (up to 1996) was provided by Dr. E.
Esarey of LBNL: IEEE Trans. Plasma Sci. (1996)



CPA lasers and the jet age

With the invention of CPA laser and its rapid
development to sub-ps TW level, laser plasma
accelerators went info the SMLWFA regime and the
jet age, and eventually get close to the simplest
version LWFA

Laser

A breakthrough is
awaiting .......

Electron beam

<4 2mm P



Real Breakthroughs
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A 3D nonlinear regimel

_ _ o Perfect for electron acceleration, made by an
The first hint? “cavitation” electron bunch

. . ]
Self-focusing of shortintense pulses in plasmas PIYSICAL REVIEW A VULLME #4, NUMBES 1t 15 NOVEMDER 193]
Guo-gheng Sun, Edward Ott™™ Y. C, Lee," and Parvez Guzdar
Laboretory for Flaspe and Fuvioir Riurgy Styeties, Unitseesity of Murpinnd, Coilfege Pork, Maryland 20747 Acceleration and focwsiug of electrons in tho-dimensinal onlinear plasma wake tields
| Recedved 4 July 1986; accepted 14 Owtober 1986)
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focused Laser Light channel {this new phenomenon i calle) eliciron copitadie ).

It can also be made by a laser _
— Generating a new electron

beam!

Appl. Plys. B 74, 355361 (2002) Applied Physics B
DO 10100700 745 Lasers and Optics
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Laser Wakefields at UCLA and LLNL*
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Physics relevant to a realistic
Plasma based accelerator

e Ion channel formed by crossing

= &%) Trajectory crossing

L=
w

Q
o

[=]
W

L=
5]

Driven by an electron beam
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Driven by a laser pulse

e Ideal linear focusing force

Uniform acceleration

Fluid model breakdown!

2D/3D and electromagnetic in nature!
Trapping and crossing are different!

Wake excitation for given drivers ...
Beam loading, transformer ratio ...
Driver evolution, guiding,instabilities ......
Self-injection, wave breaking ......

How to choose parameters for a real
plasma based accelerator?



Understand the blowout regime

Theory

-Wake excitation and beam loading

- Electron hosing instability

-Laser plasma matching and guiding

- Phenomenological framework of LWFA in the blowout regime
Simulation

- Development of the capability of large scale parallel PIC simulation
- 3D simulations of LWFA stage from GeV-100GeV

3D modeling of PWFA experiments

Experiment

-6eV-1006GeV level PWFA

-Betatron X-ray and positron production

- Short pulse laser self-guiding

- Self -guided self-injected LWFA experiment at sub-6eV level

2 Nature, 15PRLs in 7 years



A theory for wake excitation and
Beam loading
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W. Lu et al., PoP (2005), PRL (2006), PoP (2006)[invited]
M. Tzoufras, W. Lu et al., PRL (2008), PoP [invited, In preparation]



A theory of electron hosing instability

S=0.52 m
Region | Regionll Region lli

Ix, /x|

Hosing is an instability due to coupling between the centroid

of the beam and the ion channel (focusing force on the beam).

We developed a theory that can accurately describe various physical
effects of beam plasma parameters on the growth of hosing

C. Huang, W. Lu et al., PRL (2007)



A Phenomenological framework of
LWFA in the blowout regime and
the optimal scaling

-Laser and plasma matching
- Wake excitation

-Laser guiding

Local pump depletion

- Dephasing

- Self-injection

-Beam loading

10fs .3nC 1.5GeV electron beam
W. Lu et al., PR-STAB (2007) produced by a 200TW 30fs laser pulse



Massively parallel PIC codes

for advanced accelerator modeling
* e

¢ Fully Relativistic Electromagnetic PIC code + Ponderomotive guiding center + envelope

- Massively Parallel (scales well up to > 32000 cpus) model

- Dynamic Load Balancing, Higher order particle - Can be 100+ times faster than conventional
shapes, Open EM boundary conditions, lonization, PIC with no loss in accuracy
Binary Collision Module, Parallel 1/0 - Scales to 1000’s of processors

« 3D Lorentz Boosted Frame implemented - Examples of applications

+ Examples of applications « Simulations for PWFA experiments,

+ Mangles et al., Nature 431 529 (2004). EI57/162/164/164X/167 (Including Feb. 2007 Nature)

« Tsung et al., Phys. Rev. Lett., 94 185002 (2004) * Study of electron cloud effect in LHC.

+ Lu et al, Phys. Rev. ST: AB, 10, 061301 (2007) * Plasma afterburner design up to TeV

* Beam loading study using laser/beam drivers

- Development institutions

- Development institutions

T = AR A Y I |r||-II"': __»,*""M-”‘»_‘ TL1

CALIFORNIA CALIFORNIA



Full scale 3D PIC simulations of LWFA:
From GeV to 100GeV

i e A comparison between 3D PIC
1sf J Simulation in lab frame and in a
0_; J\\ | Lorentz boosted frame
ol J | - (1.5GeV beam)
N A

Channel-guided LWFA with external injection (.5-100GeV)
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W. Lu et al., PR-STAB (2007), S. Martins et al., in preparation
M. Tzoufras et al., in preparation



What one can do with a 300J short
Pulse laser

Full PIC simulations
in a Lorentz Boosted

Frame for 12GeV!

Chargo Density (e /em?]
nergy (Gev]

12GeV electron bunch produced by a 110fs 300J laser
interacting with a 22cm long low density plasma (2.7*%107cm)

S. Martins et al., in preparation



Experimental Campaign to 100GeV

Three observations

*To reach useful acceleration of10GeV and beyond,
one needs PW drivers (with hundreds J of energy)
inferacting with meter scale low density plasma
(~1017cm-3)

- To understand the physics better through
experiments also needs high repeat rate drivers
with extensive diagnostics

*Energy of this scale needs extensive expertise on
accelerator physics



Stanford Lihear_A,cc__elemTor

Center(SLAC)
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xperimental Se
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BREAKING THE 1 GeV BARRIER

Ener
REVIEW crey
[ _ETTERS hange
e (GeV)
Accelerated Electrons —. - - = }t+2
Initial Beam Energy -=-=F0
Decelerated Electrons| = - — =} 2

n 3.5x1017cm® L~10 cm, N = 1.8x101. T = 50 fs %
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NTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

42 Billion Volt
Electrons Using
an 83 cm Long
Plasma Wakefield
Accelerator

Energy Doubling of COIJRIER

Doubling energy in a plasma wake

ASTRONOMY LHC FOCUS COSMIC RAYS
The Milky Way's i

Nature v 445,p741 (2007) parice sccserator 10




Radiation Loss :Ultimate Limit on Plasma

Accelerators
R X-rays

Plasma Wiggler for collimated X-
ray production 10 KV-100 MV

S. Wang et al. Phys. Rev. Lett. Vol 88. 13,
pg. 135004, (2002)
D. Johnson et al., PRL (2006)




Can self-guiding work for a short laser
Pulse in a plasma

Image of Beam at Exit
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Toward to a GeV level self-quided and
Self-injected LWFA at LLNL

100 TW Callisto 102" W/cm2 at 10 J

*A collaboration of UCLA, LLNL and UCSD Zal
‘Upgrading the Callisto laser at LLNL
for LWFA experiments

‘Results from our first campaign show

monoenergtic electrons of energy up to
400MeV and betatron x-rays I Covast 10

Energy >9J
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D. Froula et al.,
' f85 offanis °
08 carter s In preparation




SCIENTIFIC
AMERICAN

Tabletop Accelerators
Make Particles Surf on

Plasma Wakes

-Smaller? '
-Cheaper?

How to Protect

New Orleans
from Future Storms

FCORUARY 2006
WAL ECIaM. COR




