

Coherent Amplification of Ultrashort Pulses in a High-gain Medium: X-ray Lasers Seeded with High-Harmonic Pulses

Chul Min Kim, Karol A. Janulewicz, and Jongmin Lee

Advanced Photonics Research Institute Gwangju Institute of Science and Technology

Motivation

X-ray/EUV pulses with excellent properties

Strong	for high SNR and nonlinear optics
Ultrashort	for temporal resolution
Coherent	for phase control and ultimate resolution
Polarized	for quantum state specification
X-ray/EUV	for spatial resolution

Applications

Time-resolved spectroscopy/microscopy: Investigation of material structure/dynamic at (sub)fs and nm Ex). Attoscience, coherent diffraction imaging, ...

Practical X-ray Sources

Source	Scheme	Coherence	Characteristics	Reference
X-ray laser	Laser plasma, discharge plasma	Y	5 ps, 10-50 nm, narrowband, μJ, laser rep. rate or kHz	Suckewer, Laser Phys. Lett. 6 , 411 (2009)
Atomic HH	Laser plasma	Y	<100 fs, 10-60 nm, broadband, <µJ, laser rep. rate	Krausz, Rev. Mod. Phys. 81 , 163 (2009)
XFEL	Accelerator	Y	10-500 fs, ~ nm, mJ, 100 Hz	Websites of European XFEL and LCLS
Hard x-ray from cluster/liqui d/solid	Laser plasma	Ν	<ps, 0.1="" nm,<br="">10¹⁰ photons (4pi sterad), kHz</ps,>	Attwood, Soft X-rays and Extreme Ultraviolet Radiation (1999)
Synchrotron	Accelerator	N	100 ps, >0.1 nm, 100 MHz	Attwood, Soft X-rays and Extreme Ultraviolet Radiation (1999)

Coherent X-ray/EUV Sources

	Topic of High harmonics	this talk X-ray laser	X-ray free electron laser			
Wavelength	10 ~ 60 nm (broad frequency comb)	10 ~ 50 nm (narrow spectrum △λ/λ~10 ⁻⁵)	> 0.1 nm (broad frequency comb)			
Polarization	Linearly polarized	Randomly polarized	Linearly polarized			
Energy/pulse	pJ ~ sub µJ/order (10 ⁶ ~ 10 ⁹ photons/shot)	µJ (10 ¹⁰ ~ 10 ¹² photons/shot)	mJ			
Pulse duration	<= 30 fs	> ps	10-500 fs			
Coherence	Highly coherent	Limited spatial coherence	Limited temporal coherence			
Mechanism	Nonlinear oscillation forced by optical laser	Quantum laser with bound electrons ASE (laser plasma): out of random spontaneous emission	Classical laser with free electrons SASE (accelerator): out of noise			
	Seed	X-ray/EUX amplifier				

HH Seeding of XRL

Research questions

HH seeding of XRL for strong ultrashort coherent polarized x-ray/EUV source?

How is it different from optical amplification? – physics of amplification of ultrashort x-ray/EUV pulses in a highgain medium

Experimental reports

Zeitoun et al., Nature **431**, 426 (2004). Wang et al., Nature Photon. **2**, 94 (2008).

Optical Amplification vs HH Amplification

Frantz-Nodvik (FN) equations intensity and population

Maxwell-Bloch (MB) equations field, population, and dipole

Theoretical Description

Plasma dynamics/kinetics

Resonant amplification (short wavelength)

Hydrodynamic equations

FN or MB equations

Frantz-Nodvik equations

Wang et al., Nature Photon. 2, 94 (2008)

Maxwell-Bloch equations

Al'miev et al., Phys. Rev. Lett. **99**, 123902 (2007) Robillart et al., X-Ray Lasers 2008 Variation in treating adiabaticity, randomness of spontaneous emission, polarization, dimensions, and plasma dynamics/kinetics

Our approach

Plasma dynamics/kinetics with simple relaxation processes and pumping function

1D MB equations with nonadiabaticity, randomness of spontaneous emission, and polarization

Theoretical Model

Atoms pumped synchronously with HH pulse (ideal traveling-wave amplification) $Ag^{19+}: 4d \rightarrow 4p (13.9 \text{ nm})$

Two-level four-state atom

Practically, a A system with pumping and decay The states of the degenerate lower level should be separately treated.

G I T S

Shore, The Theory of Coherent Atomic Excitation Hasegawa et al., J. Opt. Soc. Korea **13**, 60 (2009)

Maxwell-Bloch equations

Eq. for populations

$$\dot{N}_{b} = -\gamma_{b}N_{b} + \operatorname{Im}\left\{P_{R}E_{R}^{*} + P_{L}E_{L}^{*}\right\}/2 + R_{b}$$
$$\dot{N}_{a1} = -\gamma_{a}N_{a1} + \operatorname{Im}\left\{P_{R}^{*}E_{R}\right\}/2 + \gamma_{bir}N_{b}$$
$$\dot{N}_{a,-1} = -\gamma_{a}N_{a,-1} + \operatorname{Im}\left\{P_{L}^{*}E_{L}\right\}/2 + \gamma_{bir}N_{b}$$
$$\dot{P}_{a} = -\gamma_{a}P_{a} - iz_{a}^{2}\left\{E_{a}\cdot(N_{b} - N_{b}) + n_{b}Q_{b}+E_{b}\right\} + \Gamma$$

Eq. for polarizations

 $R_b(\tau)$

 $\Gamma_{L,R}(N_b,\tau)$

$$P_{R} = -\gamma_{ba1}P_{R} - iz_{ba}^{-} \{E_{R} \cdot (N_{b} - N_{a1}) + n_{i}\rho_{-1,1}E_{L}\} + 1_{R}$$

$$\dot{P}_{L} = -\gamma_{ba1}P_{L} - iz_{ba}^{2} \{E_{L} \cdot (N_{b} - N_{a,-1}) + n_{i}\rho_{1,-1}E_{R}\} + \Gamma_{L}$$

$$n_{i}\dot{\rho}_{1,-1} = -\gamma_{1,-1}n_{i}\rho_{1,-1} + i\{P_{R}^{*}E_{L} - P_{L}E_{R}^{*}\}/4$$

Eq. for electric
$$\partial E_L / \partial z = (i2\pi\omega_0 / c) \cdot (P_L - n_e E_L / \omega_0^2)$$

fields $\partial E_R / \partial z = (i2\pi\omega_0 / c) \cdot (P_R - n_e E_R / \omega_0^2)$

pumping to the upper level

random source of spontaneous emission

Larroche et al., PRA **62**, 043815 (2000) Shore, The Theory of Coherent Atomic Excitation

Parameters

$$\hbar \omega_0 = 89.2 \,\mathrm{eV} \,(\lambda_0 = 13.9 \,\mathrm{nm})$$

From EHYBRID (laser-plasma simulation)

$$\gamma_a = 2.33 \times 10^{12} \text{ Hz} (1/\gamma_a = 0.429 \text{ ps})$$

 $\gamma_b = 2.56 \times 10^{12} \text{ Hz} (1/\gamma_b = 0.391 \text{ ps})$
 $n_e = 2.0 \times 10^{20} \text{ cm}^{-3}$
 $g_{0,\text{max}} = 70 \text{ cm}^{-1} \Longrightarrow n_{i,\text{max}} = 9.05 \times 10^{15} \text{ cm}^{-3}$

From MCDFGME (atomic calculation)

$$\gamma_{bir} = 5.93 \times 10^{10} \text{ Hz} (1/\gamma_{bir} = 16.9 \text{ ps})$$

 $z_{ba} = 0.274 \text{ au}$

From typical experimental report

$$\gamma_{ba} = 3.39 \times 10^{12} \text{ Hz} (1/\gamma_{ba} = 0.295 \text{ ps}, \Delta \lambda / \lambda = 5 \times 10^{-5})$$

 $\gamma_{1,-1} = 3.27 \times 10^{12} \text{ Hz} (1/\gamma_{1,-1} = 0.306 \text{ ps}, \gamma_{1,-1coll} = \gamma_{ba,coll} \text{ assumed})$

Relaxation rates > HH pulsewidth: coherent amplification

ASE XRL Pulse

Key Result: HHseeded XRL Pulse

Rabi Oscillation (Saturation)

ADVANCED PHOTONICS

RESEARCH INSTITUTE

Energy of amplified HH << Energy of trailing coherent pulse → pulse width >= ps

Amplification

Two saturations: one from coherent part and the other from ASE

For definition of saturation onset point, Imesch et al., X-Ray Lasers 2008

Degree of Polarization

Propagation length (mm)

Within a limited medium length, almost completely polarized. ASE reduces degree of polarization.

Amplification vs Harmonic Energy

Energy (nJ)

Once saturated, no significant difference in energy extraction

Injection Time Optimization

ADVANCED PHOTONICS

Adjustment of injection time brings stronger and more polarized radiation.

Conclusion

HH seeding of XRL or XFEL for

strong ultrashort coherent polarized x-ray/EUV source?

Not for energy but for intensity

< ps for main peak

expected

expected

How is HH amplification different from optical amplification?

Strong ASE and narrow gain bandwidth restricts pulsewidth, coherence, and polarization.

How can we mitigate the restriction?

Make the interaction coherent as long as possible.

- 1. Adjustment of HH injection time
- 2. Multiple HH injection

Multistage Amplification

Courtesy of P. Zeitoun

ADVANCED PHOTONICS

RESEARCH INSTITUTE

HHseeded XFEL

а

1.0

Lambert et al., Nature Phys. 4, 297 (2008).