Hiper

ICUIL 2010 Conference Watkins Glen, NY MO9

Laser Concepts for a Rep-Rated Multi-kJ ICF-Driver of the HiPER Facility

J. Hein¹, J.Körner¹, J.-C. Chanteloup², D. Albach², A. Lucianetti², K. Ertel³, P.Mason³, S. Banerjee³, C. Hernandez-Gomez³, J. Collier³, B. Le Garrec⁴

¹Institute for Optics and Quantum Electronics, Jena, Germany,
²Laboratoire LULI, Ecole Polytechnique, Palaiseau, France,
³Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK,
⁴Commissariat à l'Energie Atomique-CESTA, Le Barp, France.

Europe path to laser driven fusion energy

HPER

Exploring the science of extreme conditions and developing the route to laser driven fusion energy

The next generation laser fusion facility to be constructed in Europe The High Power Laser Energy Research (HiPER) Facility

1 km

Per ber of the stand of the serve of the ser

HiPER time line

Where we are

Technology down selection

Laser driver for IFE needs to be efficient (ideally, at least 10% - 15%) ...and operate at a close to 10 Hz repetition rate

In driving the compression phase of the capsule, symmetry is a key aspect.

250 kJ in 48 beams (UV) appears to be optimum

Each "spot" therefore needs ~10 kJ of fundamental light

Typical beam distribution

	Total energy (kJ)	Spots	energy per spot (kJ)	beam per bundle	energy per beam (kJ)
Compression	500	48	10,42	9	1,16
Shock Ignition	130	48	2,71	3	0,90
Total	630	48	13,125	12	_

48 bundles of 9 + 3 =twelve ~1 kJ beams

Versatility offered with a ~10 kJ bundle formed of several individual beamlets

Versatility offered with a ~10 kJ bundle formed of several individual beamlets

Versatility offered with a ~10 kJ bundle formed of several individual beamlets

Focal spot energy distribution adjustment with different :

HiPER Laser energy requirements for HiPER

Beam name	Pulse duration	Total 1w energy (kJ)	Beam number	Energy per spot (kJ)	Demonstrator energy
Compression	4 to 10 ns	500	48	~10	1 to 10 kJ
shock ignition	0.4 ns	130	48	~3	1 to 3 kJ
fast ignition	10 ps	100	1	100	1 to 10 kJ

A continental integrated collaborative work

<u>A key Preparatory Phase goal :</u> Proposing a technological solution for a ~500 kJ ~10 Hz ~10 % efficient laser facility

Modular approach

<u>Our current objective :</u> Designing a ~10kJ unit as a fully operational demonstrator

4 European teams are investigating options

Hiper

4 options investigated

IOQ, Germany	STFC, UK	CNRS, France	CEA, France
seit 1558		Crowner	œ
CaF ₂		Glass	
Gas cooled plates		Active mirror	fiber
Pump extraction	coolant	pump extraction extraction coolant	

HIPER IOQ proposed option relies on Yb:CaF₂

Like Yb:YAG, Yb:CaF₂:

- carries a high thermal conductivity (increasing at low temperatures)

- is available in large size (cubic symmetry ightarrow ceramic)

Moreover, Yb:CaF₂ offers:

- large absorption and emission band widths → allow amplification of short pulses and wavelength multiplexing

- long fluorescence life time (2.4 ms) → optimizing diode capital cost investment
- low nonlinear refractive index \rightarrow low B-integral at high fluence

Yb:CaF,

Up to Ø200 mm (Korth GmbH,

Germany)

seit 1558

HIPER FSU cryo CaF₂ concept point of operation

High extraction fluence and large number of passes need special effort in amplifier design.

Multi-pass angular & spectral multiplexing
architecture

Use of cryogenic gas cooled amplifier heads

- 3 different beams are amplified in one amplifier
- each beam achieves 8 round trips
- time delays on a ns scale avoid any overlap of the pulses in the amplifier

> 1kJ/4ns pulses single beam, 333J/0.4ns pulse

- > 4 kJ total energy per amplifier
- rectangular 15.8x10.5 cm² shape:

→ quadratic arrangement of the 3 beams in the 8-pass amplifier (4 x 6) with a size of 63 cm x 63 cm

- → efficient cooling in a gas cooled laser head
 - → doping concentration 1.5 %
 - > material thickness: 6.7 cm
 - B-Integral < 0.8</p>
 - > g[·]L = 1.88 (diagonal)

HIPER Selected point of operation

Doping level = 0.16 at% Thickness > 2.6 cm Extraction angle = 20° Pump intensity = 6 kW/cm² 11x11 cm² aperture \Rightarrow $\beta_ASE < 0$ Efficiency $\eta > 30\%$

Extracted Fluence >~10 J/cm²

Energy build-up

Baikowski cosintered Yb/Cr:YAG ceramicsHiPERsatisfies HiPER requirements

HIPER Cryogenically cooled amplifiers

Variable average temperature in the laser disk by changing the thickness of cryogenic cooled He gap (He pressure variation could be an option as well)

HiPER *Temperature tunable through He thickness*

CINIS

HIPER Amplifiers with variable doped slabs

→ Reduced gain medium volume requirement and equalized heat load

Fiber based concept

G.A. Mourou, C. Labaune, D. Hulin, A. Galvanauskas : "New amplifying laser concept for Inertial Fusion Driver", Journal of Physics: Conference Series **112** (2008) 032052

One single fibre being able to handle a limited power and wall-plug efficiency being limited as well, three main questions arise:

- •How much power can we manage per fibre ?
- •How many fibres shall we need ?
- How much thermal power has to be removed ?

Limits to power scaling are :

- Thermal lensing
- Thermal rupture
- Optical damage
- Melting of the core
- Non linear effects, SBS and SRS
- X-ray, γ-ray and neutron induced damages

Looking forward if we can find sustainable elements for bridging the gaps in technology

Watkins Glen State Park

Thanks to all HiPER contributors

Thanks to all HiPER contributors

