ICUIL Conference 2010

Relativistic electron dynamics in laser-nanofoil interactions: Towards Ultra-dense Electron Mirrors

D. Kiefer

LMU München • Fakultät f. Physik Max-Planck-Institute of Quantum Optics Cluster of Excellence "Munich-Centre for Advanced Photonics" (MAP)

A. Henig, R. Hörlein, P. Hilz, K. Allinger, J. Bin W. Ma, V.Kh. Liechtenstein, X. Q. Yan, J. Schreiber, D. Habs

S. Steinke, M. Schnürer, T. Sokollik, P. V. Nickles, W. Sandner

D. Jung, D. C. Gautier, R. Shah, SASI !??!? S. Letzring, R. Johnson, T. Shimada, J. Fernandez, B. M. Hegelich

B. Dromey

Watkins Glen, NY - 09/27/2010

why using targets with thickness $d \ll (d_{opt})_{ion}$?

Outline

Motivation:

electron acceleration from solid density, ultra-thin targets

- First experimental observations:
 - Los Alamos National Lab
 - Max-Born Institute

electrostatic charge separation field: (field of ID capacitor)

$$E_s = e n_e d / \epsilon_0$$

in normalized units: ($E_0=m_e c\,\omega/e$)

laser field	$\frac{E_L}{E_0} = a_0 > \frac{n_e}{n_c} k_L d = \frac{E_s}{E_0}$	electrostatic charge separation field
----------------	---	--

<u>note</u>: plasma skin depth (typically ~ nm) > target thickness

laser field	$\frac{E_L}{E_0} = a_0 > \frac{n_e}{n_c} k_L d = \frac{E_s}{E_0}$	electrostatic charge separation field
----------------	---	--

<u>note</u>: plasma skin depth (typically ~ nm) > target thickness

ultrathin, ~ few atom layers thick => t ~ as << fs (gas target)

V. V. Kulagin et al., PRL **99**, 124801 (2007) Meyer-ter-Vehn, H. C. Wu, EPJ D (2009)

- free standing foils
- thickness 60nm 3nm
- ♦ high sp³ bonding content: ~75%
- high mechanical strength

- free standing foils
- thickness 60nm 3nm
- ♦ high sp³ bonding content: ~75%
- high mechanical strength

- free standing foils
- thickness 60nm 3nm
- ♦ high sp³ bonding content: ~75%
- high mechanical strength

- free standing foils
- thickness 60nm 3nm
- ♦ high sp³ bonding content: ~75%
- high mechanical strength

3nm foil: 100nC in focal volume of a $10 \mu m$ focal spot

+/- 8deg || laser pol. axis

e⁻ Spatial Distribution

Max Born Institut, Berlin

Ti:Sapph, 700mJ, 50fs, 10Hz Double Plasma Mirror

thickness reduction by evaporation

- DLC foil thicknesses deduced from AFM measurements include contaminant layer of ~ nm thickness
- contaminant layer can be eliminated by target heating prior to the shot using a cw laser

thickness reduction by evaporation

- DLC foil thicknesses deduced from AFM measurements include contaminant layer of ~ nm thickness
- contaminant layer can be eliminated by target heating prior to the shot using a cw laser

nm

foil

thickness reduction by evaporation

- DLC foil thicknesses deduced from AFM measurements include contaminant layer of ~ nm thickness
- contaminant layer can be eliminated by target heating prior to the shot using a cw laser

nm

foil

thickness reduction by evaporation

- DLC foil thicknesses deduced from AFM measurements include contaminant layer of ~ nm thickness
- contaminant layer can be eliminated by target heating prior to the shot using a cw laser

thickness reduction by evaporation

- DLC foil thicknesses deduced from AFM measurements include contaminant layer of ~ nm thickness
- contaminant layer can be eliminated by target heating prior to the shot using a cw laser

Experimental Setup

Experimental Setup

Experimental Setup

MBI - Electron Blow-Out

MBI - Electron Blow-Out

MBI - Electron Blow-Out

Shot 15

Electron Spectra

3nm/5nm thin foils:

thermal electron distribution: hot electron temperature $T_{hot} \sim 0.5 MeV$

<3nm thin foils (target heated prior to high-intensity laser shot):

additional (peaked) spectral component above the thermal electron background

t=t_{peak}

5nm target

20

∎₀ a²

x ()

x (?)

Conclusions

Motivation: Generation of a relativistic electron mirror of solid density

acceleration of all foil electrons in a single, dense electron bunch (Electron Sheet)

<u>Achievements:</u>

 fabrication of free-standing, ultra-thin foils down to 3nm thickness which can be used for laser plasma experiments

 first observation of electron blow-out from ultra-thin foils at two different laser systems

Future Plans:

Thomson scattering of a counter-propagating probe pulse

Conclusions

Motivation: Generation of a relativistic electron mirror of solid density

acceleration of all foil electrons in a single, dense electron bunch (Electron Sheet)

Achievements:

 fabrication of free-standing, ultra-thin foils down to 3nm thickness which can be used for laser plasma experiments

 first observation of electron blow-out from ultra-thin foils at two different laser systems

Future Plans:

Thomson scattering of a counter-propagating probe pulse

Conclusions

Motivation: Generation of a relativistic electron mirror of solid density

acceleration of all foil electrons in a single, dense electron bunch (Electron Sheet)

Achievements:

 fabrication of free-standing, ultra-thin foils down to 3nm thickness which can be used for laser plasma experiments

 first observation of electron blow-out from ultra-thin foils at two different laser systems

Future Plans:

Thomson scattering of a counter-propagating probe pulse

Thank you!

