High-Temporal-Contrast Experiments Using a Hybrid OPCPA-Nd:Glass Multi-Terawatt (MTW) Laser System

J. D. Zuegel University of Rochester Laboratory for Laser Energetics International Conference on Ultrahigh Intensity Lasers Shanghai-Tongli, China 27–31 October 2008

Summary

The MTW laser provides a unique facility to study ultrahigh-intensity laser and target physics

- The MTW laser enables important experimental campaigns:
 - high-temporal-contrast laser enhancements and diagnostic development
 - high temporal contrast enables solid-target experiments
 - high pointing stability makes it possible to use small, low-mass targets ($V_{target} \approx 10^{-6} \text{ mm}^3$)

UR 🔌

- high availability facilitates parametric studies with good statistics required to study important physics issues
- Laser-to-fast-electron conversion efficiency is 23% ± 8% when intense pulses are energy scaled with no observed pulse width dependence
- Low-density plasma generation from laser prepulses plays an important role in fast electron generation, so measuring and controlling temporal contrast is important

Collaborators

High-Contrast Laser Team C. Dorrer I. V. Begishev J. Bromage R. Brown A. V. Okishev Target Physics Team P. M. Nilson W. Theobald V. Ovchinnikov* J. Myatt B. Eichman S. Ivancic M. Storm O. V. Gotchev C. Stoeckl T. C. Sangster R. Betti D. D. Meyerhofer

University of Rochester Laboratory for Laser Energetics

*Ohio State University

- Introduction: MTW laser description
- MTW contrast measurements
- Contrast enhancements tested on the MTW
 - ultrafast optical parametric amplifier
 - OPCPA pump filter with Volume Bragg grating
- MTW target experiments
 - isochoric heating of solid-density targets by relativistic electrons
 - laser-to-electron conversion efficiency for "bookend" targets

The front-end prototype for OMEGA EP is used for diagnostic development and target experiments

- The MTW laser is a single-beam, short-pulse laser facility.
- Pulse widths (0.5 to 100 ps) are adjustable using an Öffner grating pulse stretcher.
- OPCPA amplification provides high temporal contrast ($C > 10^8$).
- A four-pass Nd:phosphate glass disk amplifier delivers 10 J per shot (limited by compressor grating damage).
- An ~f/3 off-axis parabola focus (~4- μ m FWHM) yields up to 4 \times 10¹⁹ W/cm².
- Shot cycle time as short as 10 min; over 2300 system shots!

Producing and measuring ultrahigh pulse contrast for future OMEGA EP experiments is a significant challenge

Time

Known limits to CPA-system pulse contrast

- Seed pulse contrast typical ML oscillator contrast is ~10⁶:1
- Spectral phase distortions produce "picosecond pedestals"
- Incoherent noise on OPCPA pump pulse imprints on chirped-pulse spectrum that prevents full compression below ~100 ps
- OPG and/or ASE incoherent radiation does not compress
- Discrete prepulses from ML pulse train and multipass amplification

Scanning and single-shot cross correlators are used to measure temporal contrast

Sequoia* scanning cross correlator

- 660-ps range (-530/+130 ps)
- Estimated dynamic range = 91 dB for a 30 μJ Fourier-transform-limited pulse on MTW

 85 replicas with ~6-ps delay between replicas yields ~ 510 ps temporal range

A prototype HCD is now deployed on the MTW laser for target shots.

"Baseline" MTW contrast is measured using the 5-Hz OPCPA front end with the Sequoia cross-correlator

*C. Dorrer et al., JOSA B <u>24</u>, 3048 (2007).

[†]C. Dorrer et al., Opt. Express <u>16</u>, 3058 (2008)

UR

High-contrast technologies are being tested in the MTW laser system before being deployed in OMEGA EP.

- Maximizing input signal-to-noise ratio (contrast) at every amplification stage minimizes degradation from OPG and ASE.
- Spectral amplitude and phase of amplified pulse must be maintained for best pulse compression.

Contrast levels greater than 10¹⁰ within ~10 ps have been achieved in the MTW seed source

Ultrafast OPA using a seed pulse with zero dispersion (no stretch) and ~2-ps (FWHM) pump pulse at 2ω

C. Dorrer et al., Opt. Lett. 32, 2143 (2007).

OPCPA amplification degrades the extreme contrast delivered by the UOPA seed source

UR

- Temporal contrast appears to be dominated by phenomena like
 - OPCPA pump-induced noise
 - spectral phase noise?

Regenerative filtering shows promise for limiting OPCPA pump laser noise transferred to the signal

Extremely narrowband filtering is achieved by filtering ASE on each regenerative amplifier round trip with a volume Bragg grating (VBG).

C. Dorrer et al., Opt. Lett. 32, 2378 (2007).

Fast-electron refluxing in small-mass targets allows access to high-energy-density phenomena

 Refluxing is caused by Debye sheath field effects^{1,2}

UR 🔌

- Majority of fast electrons are stopped in the target
- Provides a simple geometry for testing laser-coupling, electron-generation, and target-heating models^{3,4}
- High temporal contrast is required to achieve refluxing

¹S. P. Hatchett *et al.*, Phys. Plasmas <u>7</u>, 2076 (2000).

²R. A. Snavely *et al.*, Phys. Rev. Lett. <u>85</u>, 2945 (2000).

³W. Theobald et al., Phys. Plasmas 13, 043102 (2006).

⁴J. Myatt et al., Phys. Plasmas <u>14</u>, 056301 (2007).

K-photon radiation reveals hot electron production and bulk heating of small-mass targets*

 Intense laser-plasma interaction produces energetic electrons that leave K-shell vacancies

UR 🔬

- K_{α} yield indicates hot electron conversion efficiency
- Inelastic collisions heat the target and ionize outer shell electrons
- Collisional ionization with thermal background plasma occurs
- T_e > 100 eV causes significant M-shell depletion, which affects K_β yield
- Target heating is inferred from ${\rm K}_{\beta}/{\rm K}_{\alpha}$

^{*}J. Myatt et al., Phys. Plasmas <u>14</u>, 056301 (2007).

^{*}G. Gregori et al., Contrib. Plasma Phys. <u>45</u>, 284 (2005).

Normalized K_{α} yield is approximately constant for 1-10 ps pulses with the same peak intensity

• Laser-to-electron energy-conversion efficiency (η_{L-e}) is inferred using a K_{α} production model

- Planar Cu targets (500 imes 500 imes 20 μ m³)
- 1 to 10 ps laser pulses are energy scaled (constant at ~ 10¹⁸ W/cm²)

 K_{α} yields are consistent with a refluxing electron model assuming $\eta_{L \rightarrow e} = (23 \pm 8)\%$ with no observed pulse width dependence.

Comparison of K_{β}/K_{α} ratios to simulations are consistent with the absolute K_{α} yields

- Provides a self-consistency check on $\eta_{L \to e}$
- Provides a detailed data set for comparison to future OMEGA EP experiments at higher energy densities
- High pointing stability enables the smallest targets (V = 10⁻⁶ mm³)
- Measured K_{\beta}/K_{\alpha} for the smallest targets is consistent with T_e \approx 200 eV

UR

P. M. Nilson et al., Phys. Plasmas 15, 056308 (2008).

"Bookend" targets are used to study the fast-electronconversion efficiency for cone-like target geometries

Bookend orientation sets laser polarization

\textbf{K}_{α} emission was recorded using a narrowband spherical crystal imager and two spectrometers

Bookend target experiments show similar trends as OSIRIS (2-D PIC) simulations

- Fast-electron conversion efficiency increases for the narrow bookend targets compared to flat foils.
- Resonance absorption increases *p*-polarization absorption compared to s-polarization (but strong s-pol angle dependence is not observed).

A large discrepancy is observed between flat foil targets in this campaign with earlier refluxing targets that may be explained by contrast variations.

Low-density plasma generation from laser prepulses plays an important role in fast-electron generation

- 1-D LILAC simulations estimate the low density plasma:
 - measured prepulse contrast
 - does not account for 3-D effects of bookend targets
- 1-D OSIRIS simulations calculated absorption for different density gradients:
 - longer density ramps (more low density plasma) yield higher conversion efficiency
 - angle of incidence affects the plasma profile between critical and tenth critical density

Pre-plasma plays an important role in fast-electron generation, so measuring and controlling temporal contrast is important.

Summary/Conclusions

The MTW laser provides a unique facility to study ultrahigh-intensity laser and target physics

- The MTW laser enables important experimental campaigns:
 - high-temporal-contrast laser enhancements and diagnostic development
 - high temporal contrast enables solid-target experiments
 - high pointing stability makes it possible to use small, low-mass targets ($V_{target} \approx 10^{-6} \text{ mm}^3$)

- high availability facilitates parametric studies with good statistics required to study important physics issues
- Laser-to-fast-electron conversion efficiency is 23% ± 8% when intense pulses are energy scaled with no observed pulse width dependence
- Low-density plasma generation from laser prepulses plays an important role in fast electron generation, so measuring and controlling temporal contrast is important