

Igwhuqdwlrqdd# rqihuhqfh#rq# oudkljk#gwhqvW #Ddvhuv Development, Science and Emerging Applications

Limits of the temporal contrast for CPA lasers with beams of high aperture

M.P.Kalashnikov, A.Andreev¹, H.Schönnagel

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany ¹Vavilov State Optical Institute, St. Petersburg, Russia

30. October 2008

Computer model

- Spectral clipping in compressor, stretcher and influence of the beam aperture (phase and amplitude)
- Spectral filtering with mirrors
- Clipping with tiled diffraction gratings and misalignment
- Influence of B-integral

The numerical model considers:

- propagation of a stretched pulse through medium and a diffraction grating based compressor
- the finite size of the incident beam
- effects of spectral clipping appearing in compressor and amplifiers
- slight misalignment of the compressor gratings (piston, tilt)
- self-phase modulation of the chirped pulse

In some cases MIRÓ – code was used

Pulse steepening, contrast at the pulse front

Ablation and Melting Thresholds

Dependence of temporal contrast on pre-pulse duration

Hard clipping of spectrum, the stretcher

narrow beam case is typical for the stretcher

Pulse FWHM on bandwidth of the filter

Influence of dielectric mirros, bandwidth

Influence of dielectric mirros, SG power

Clipping of spectrum in the compressor

Incident beam

Typical parameters: gr. constant = 1480 l/mm $L_{grating 2} = \{ 40 \text{ cm} - 2 \text{ m} \}$ $L_{compr} = 82 \text{ cm}$ Pulse bandwidth $\Delta \lambda = 100 \text{ nm}$ Beam diameter = $\{ 0 - 90 \text{ cm} \}$

Influence of the beam aperture and filtering

Clipping in compressor

The beam diameter must be big enough (projection on the second diffraction grating bigger than the with of the dispersed spectrum of a narrow beam)

The diffraction grating must be ~1.5 times bigger than the FWHM of the dispersed beam on the second diffraction grating (L_{grating}>1.5*FWHM_w)

Tiled diffraction gratings

Incident beam

Influence of a gap

The beam diameter of 0-60 cm, gratings size 160cm gap widths 0.5 cm

Influence of gaps, beam diameter

Incident beam

Piston

(a jump of the spectral phase)

Influence of a piston, accumulated pre-pulse

Beam diameter = 50 cm, $\Delta\lambda$ = 100 nm

Surface quality of diffraction gratings

Influence of self-phase modulation

Reduction of peak intensity on the breakup integral

M3I Max-Born-Institut

Deformation of spectreal phase with SPM

Residual spectral phase after compensation

SPM with post-pulses

Stretched pulse mixed with a reflected replica

SPM with post-pulses

SPM, Pre-pulse energy

Conclusions

- the finite beam aperture ,smoothes' strongly spectral clipping effects
- The ablation/melting limit (0.5J/cm²) can be achieved at the time moment of several ps. before the pulse peak with diffraction gratings of a reasonable size. This can be a problem for intensity exceeding 10²⁴W/cm²
- SPM of chirped pulses is a very important issue limiting temporal contrast

